Skip to main content
Log in

Active Human Hepatitis B Viral Polymerase Expressed in Rabbit Reticulocyte Lysate System

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Human HBV polymerase has been expressed in reticulocyte lysate system. The expressed protein shows the DNA-dependent DNA polymerase activity. In vitro transcription and translation produces a major protein product with an apparent molecular weight of approximately 100 kD. The HBV DNA polymerase has been characterized biochemically in the condition that the contaminating cellular DNA polymerases were fairly suppressed by aphidicolin and NEM. The polymerization reaction is optimal at pH 7.5 and 37°C and the polymerase requires either MnCl2 or MgCl2, with a preference for MnCl2. The protein represented an optimal activity in the presence of either 75 mM NaCl or 100 mM KCl, with a higher activity at 75 mM NaCl than 100 mM KCl. Study of the polymerizing activity of the deleted versions of the polymerase protein suggests that the terminal protein is essential for full polymerase function and the spacer region may decrease the stability of the P protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Summers J. and Mason W.S., Cell 29, 403–415, 1982.

    Google Scholar 

  2. Miller R.H., Marion P.L., and Robinson S.W., Virology 139, 64–72, 1984.

    Google Scholar 

  3. Ganem D. and Varmus H.E., Annu Rev Biochem 56, 651–693, 1987.

    Google Scholar 

  4. Khudyakov Y.E. and Makhov A.M., FEBS Lett 243, 115–118, 1989.

    Google Scholar 

  5. Wang G.H. and Seeger C., Cell 71, 663–670, 1992.

    Google Scholar 

  6. Zoulim F. and Seeger C., J Virol 68, 6–13, 1994.

    Google Scholar 

  7. Lanford R.E., Notvall L., and Beames B., J Virol 69, 4431–443, 1995.

  8. Toh H., Hayashida H., and Miyata T., Nature 305, 827–829, 1983.

    Google Scholar 

  9. Radziwill G., Zentgraf H., Schaller H., and Bosch V., Virology 163, 123–132, 1988.

    Google Scholar 

  10. Li J.-S., Cova L., Buckland R., Lambert V., Deleage G., and Trepo C., J Virol 63, 4965–4968, 1989.

    Google Scholar 

  11. Chang L.J., Hirsch R.C., Ganem D., and Varmus H.E., J Virol 64, 5553–5558, 1990.

    Google Scholar 

  12. Kaplan P.M., Greenman R.L., Gerin J.L., Purcell R.H., and Robinson W.S., J Virol 12, 995–1005, 1973.

    Google Scholar 

  13. Howe A.Y.M., Elliott J.F., and Tyrrell D.L.J., Biochem Biophys Res Commun 189, 1170–1176, 1992.

    Google Scholar 

  14. Tavis J.E. and Ganem D., Proc Natl Acad Sci USA 90, 4107–4111, 1993.

    Google Scholar 

  15. Wang G.H. and Seeger C., J Virol 67, 6507–6512, 1993.

    Google Scholar 

  16. Tavis J.E., Perri S., and Ganem D., J Virol 68, 3536–3543, 1994.

    Google Scholar 

  17. Lanford R.E., Notvall L., Lee H., and Beams B., J Virol 71, 2996–3004, 1997.

    Google Scholar 

  18. Jeong J.-H., Kwak D.-S., Rho H.-M., and Jung G., Biochem Biophys Res Commun 223, 264–271, 1996.

    Google Scholar 

  19. Wei X. and Peterson D.L., J Biol Chem 271, 32617–32622, 1996.

    Google Scholar 

  20. Lee Y.-I., Hong Y.-B., Kim Y., Rho H.-M., and Jung G., Biochem Biophys Res Commun 233, 401–407, 1997.

    Google Scholar 

  21. Rho H.-M., Kim K., Hyun S.-W., and Kim Y.-S., Nucleic Acids Res 17, 2124, 1989.

    Google Scholar 

  22. Lee H.-J., Kwon Y.-T., Rho H.-M., and Jung G., Biotechnol Lett 15, 821–826, 1993.

    Google Scholar 

  23. Sanger F., Nickelen S., and Coulson A.R., Proc Natl Acad Sci USA 74, 5463–5467, 1977.

    Google Scholar 

  24. Ikegami S., Taguchi T., Ohashi M., Oguro M., Nagano H., and Mano Y., Nature 275, 485–459, 1978.

    Google Scholar 

  25. Goto Y., Yamashita T., Arens M., Takahashi T., and Hashimoto T., Japan J Med Sci Biol 37, 9–18, 1984.

    Google Scholar 

  26. Helgstrand E., Eriksson B., Johansson N.G., Lannero B., Larsson A., Misiorny A., Noren J.O., Sjoberg B., Stenberg K., Stening G., Stridh S., Oberg B., Alenius S., and Philipson L., Science 291, 819–821, 1978.

    Google Scholar 

  27. Staschke K. and Colacino J., J Virol 68, 8265–8269, 1994.

    Google Scholar 

  28. Hu J. and Seeger C., Methods in Enzymol 275, 195–208, 1996a.

    Google Scholar 

  29. Tavis J.E., Massey B., and Gong Y., J Virol 72, 5789–5796, 1998.

    Google Scholar 

  30. Hu J. and Seeger C., Proc Natl Acad Sci USA 93, 1060–1064, 1996b.

    Google Scholar 

  31. Radziwill G., Tucker W., and Schaller H., J Virol 64, 613–620, 1990.

    Google Scholar 

  32. Faruqi A.F., Roychoudhury S., Greenberg R., Israel J., and Shih C., Virology 64, 764–768, 1991.

    Google Scholar 

  33. Tanese N. and Goff S.P., Proc Natl Acad Sci USA 85, 1777–1781, 1988.

    Google Scholar 

  34. Johnson M.S., McClure M.A., Feng D.-F., Gray J., and Doolittle R.F., Proc Natl Acad Sci USA 83, 7648–7652, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y., Jung, G. Active Human Hepatitis B Viral Polymerase Expressed in Rabbit Reticulocyte Lysate System. Virus Genes 19, 123–130 (1999). https://doi.org/10.1023/A:1008175107309

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008175107309

Navigation