Skip to main content
Log in

Pollen-stratigraphical evidence of Holocene hydrological change in northern Fennoscandia supported by independent isotopic data

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Pollen records from 21 sites were used to reconstruct Holocene hydrological changes in northern Fennoscandia. The inferred dominance of maritime-type Betula-forests from c. 9600 BP onwards indicate an oceanic climate in the region during the early Holocene, with high amounts of precipitation and low seasonal contrasts. This interpretation is supported by oxygen isotope records obtained on lacustrine carbonates from Abisko, northern Sweden. Enrichment of 18O during the early Holocene suggests enhanced zonal circulation and a pronounced influence of Atlantic air-masses in northern Sweden. The pattern of Pinus expansion in the area was time-transgressive, ranging from 9200-8000 BP in the extreme north-east to 7900-5500 BP in the western and south-western parts of the region. The replacement of Betula-forests by Pinus-forests indicates a climatic change towards drier summers and increased seasonality. At Abisko, a close correlation between regional Pinus expansion and depletion of 18O in lacustrine carbonates suggests that the expansion of Pinus was triggered by a gradual attenuation of the influence of westerlies. Thus, in large-scale palaeohydrological terms, the early expansion of Pinus in the north-easternmost parts of Fennoscandia as compared to the successively later expansion in the west and south-west may reflect a gradually decreasing influence of Atlantic air-masses in northern Fennoscandia during the early and mid Holocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aario, L., 1943. Ñber die Wald-und Klimaentwickliung an der lappländischen Eismeerküste in Petsamo, mit einem Beitrag zur nord-und mitteleuropäischer Klimageschichte. Ann Bot. Soc. Zool. Bot. Fenn. ‘Vanamo’ 19: 1–158.

    Google Scholar 

  • Arvola, E., 1987. Suomen ilmastoon vaikuttavat ilmavirtausjärjestelmät ja säätyypit. In Alalammi, P. (ed.), Atlas of Finland. Folio 1231 Climate. National Board of Survey & Geographical Society of Finland, Helsinki, 22–23.

    Google Scholar 

  • Barnekow, L., 1999a. Holocene vegetation dynamics and climate changes in the Törneträsk area, northern Sweden. Thesis 43, Department of Quaternary Geology, Lund University, 30 pp.

  • Barnekow, L., 1999b. Holocene tree-line dynamics and inferred climatic changes in the Abisko area, northern Sweden, based on macrofossil and pollen records. The Holocene 9: 253–265.

    Google Scholar 

  • Barnekow, L., G. Possnert & P. Sandgren, 1998. AMS 14C chronologies of Holocene lake sediments in the Abisko area, northern Sweden – a comparison between dated bulk sediment and macrofossil samples. GFF 120: 59–67.

    Google Scholar 

  • Berglund, B. E., L. Barnekow, D. Hammarlund, P. Sandgren & I. F. Snowball, 1996. Holocene forest dynamics and climate changes in the Abisko area, northern Sweden – The Sonesson model of vegetation history reconsidered and confirmed. Ecol. Bull. 45: 15–30.

    Google Scholar 

  • Bliss, L. C., 1981. North American and Scandinavian tundras and polar deserts. In Bliss, L. C., O. W. Heal & J. J. Moore (eds), Tundra Ecosystems: A Comparative Analysis. Cambridge University Press, Cambridge: 8–24.

    Google Scholar 

  • Bliss, L. C. & N. V. Matveyeva, 1992. Circumpolar Arctic Vegetation. In Chapin, F. S., R. L. Jeffries, J. F. Reynolds, J. F., G. R. Shaver & J. Svoboda (eds), Arctic Ecosystems in a Changing Climate. Academic Press, San Diego, 59–89.

    Google Scholar 

  • Donner, J., P. Alhonen, M. Eronen, H. Jungner & I. Vuorela, 1978. Biostratigraphy and radiocarbon dating of the Holocene lake sediments of Työtjärvi and peats in the adjoining bog Varrassuo, west of Lahti in southern Finland. Ann. Bot. Fenn. 15: 258–280.

    Google Scholar 

  • Edlund, S. A., 1983. Bioclimatic zonation in a High Arctic region: Central Queen Elizabeth Island. Geological Survey of Canada, Paper 83 – 1A: 381–390.

  • Eronen, M., 1979. The retreat of pine forest in Finnish Lapland since the Holocene climatic optimum: A general discussion with radiocarbon evidence from subfossil pines. Fennia 157: 93–114.

    Google Scholar 

  • Eronen, M. & H. Hyvärinen, 1982. Subfossil pine dates and pollen diagrams from northern Fennoscandia. GFF 103: 437–445.

    Google Scholar 

  • Eronen, M. & P. Huttunen, 1993. Pine megafossils as indicators of Holocene climatic changes in Fennoscandia. Paläoklimaforschung – Palaeoclimate Research 9: 9–40.

    Google Scholar 

  • Eronen, M. & P. Zetterberg, 1996. Climatic Changes in Northern Europe Since Late Glacial Times, with special reference to dendroclimatological studies in northern Finnish Lapland. Geophysica 32: 35–60.

    Google Scholar 

  • Etherington, J. R., 1982. Environment and Plant Ecology. John Wiley, Chichester. 487 pp.

    Google Scholar 

  • Haapasaari, M., 1988. The oligotrophic heath vegetation in northern Fennoscandia and its zonation. Acta Bot. Fenn. 135: 1–219.

    Google Scholar 

  • Hämet-Ahti, L., 1963. Zonation of the mountain birch forests in northernmost Fennoscandia. Ann. Bot. Soc. ‘Vanamo’ 34: 1–127.

    Google Scholar 

  • Hammarlund, D., R. Aravena, L. Barnekow, B. Buchardt & G. Possnert, 1997. Multi-component carbon isotope evidence of early Holocene environmental change and carbon-flow pathways from a hardwater lake in northern Sweden. J. Paleolim. 18: 219–233.

    Google Scholar 

  • Hammarlund, D. & T. W. D. Edwards, 1998. Evidence of changes in moisture transport efficiency across the Scandes mountains in northern Sweden during the Holocene, inferred from oxygen isotope records of lacustrine carbonates. Proceedings of an International Symposium on Isotope Techniques in the Study of Past and Current Environmental Changes in the Hydrosphere and the Atmosphere. IAEA, Vienna 14– 18 April, 1997, IAEA-SM-349/40, 573–580.

    Google Scholar 

  • Hammarlund, D., T. W. D. Edwards, S. Björck, B. Buchardt & B. Wohlfart, 1999. Climate and environment during the Younger Dryas (G5-1) as reflected by composite isotope records of lacustrine carbonates at Torreberga, southern Sweden. J. Quat. Sci. 14: 17–28.

    Google Scholar 

  • Huntley, B. & I. C. Prentice, 1993. Holocene vegetation and climates of Europe. In Wright, H. E. Jr., J. E. Kutzbach, T. Webb III, W. F. Ruddiman, F. A. Street-Perrott & P. J. Bartlein (eds), Global Climates since the Last Glacial Maximum. University of Minnesota Press, Minneapolis, 136–168.

    Google Scholar 

  • Hyvärinen, H., 1975. Absolute and relative pollen diagrams from northernmost Fennoscandia. Fennia 142: 1–23.

    Google Scholar 

  • Hyvärinen, H., 1976. Flandrian pollen deposition rates and tree-line history in northernmost Fennoscandia. Boreas 5: 163–175.

    Google Scholar 

  • Hyvärinen, H., 1985. Holocene pollen history of the Alta area, an isolated pine forest north of the general pine forest region in Fennoscandia. Ecologia Mediterranea, Tome XI (Fascicule 1), 69–71.

  • Hyvärinen, H. & P. Alhonen, 1994. Holocene lake-level changes in the Fennoscandian tree-line region, western Finnish Lapland: Diatom and cladoceran evidence. The Holocene 4: 251–258.

    Google Scholar 

  • Kane, D. L., L. D. Hinzman, M.-K. Woo & K. R. Everett, 1992. Arctic hydrology and climate change. In Chapin, F. S., R. L., Jeffries, J. F. Reynolds, G. R. Shaver & J. Svoboda (eds), Arctic Ecosystems in a Changing Climate. Academic Press, San Diego, 35–57.

    Google Scholar 

  • Karlén, W., 1988. Scandinavian glacial and climatic fluctuations during the Holocene. Quat. Sci. Rev. 7: 199–209.

    Google Scholar 

  • Koç , N., E. Janssen & H. Haflidason, 1993. Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Icelandic and Norwegian Seas through the last 14 ka based on diatoms. Quat. Sci. Rev. 12: 115–140.

    Google Scholar 

  • Korhola, A., 1995. Holocene climatic variations in southern Finland reconstructed from peat-initiation data. The Holocene 5: 43–58.

    Google Scholar 

  • Kullman, L., 1979. Change and stability in the altitude of the birch tree-limit in the southern Swedish Scandes 1915– 1975. Acta Phytogeogr. Suec. 65: 1–121.

    Google Scholar 

  • Kullman, L., 1986. Late Holocene reproductional patterns of Pinus sylvestris and Picea abies at the forest limit in central Sweden. Can. J. Bot. 64: 1682–1690.

    Google Scholar 

  • Kullman, L., 1992. Orbital forcing and tree-limit history: Hypothesis and preliminary interpretation of evidence from Swedish Lappland. The Holocene 2: 131–137.

    Google Scholar 

  • Kullman, L., 1993. Holocene thermal trends inferred from tree-limit history in the Scandes Mountains. Global Ecol. Biogeogr. Lett. 2: 181–188.

    Google Scholar 

  • Kullman, L., 1995. Holocene tree-limit and climate history from the Scandes mountains, Sweden. Ecology 76: 2490–2502.

    Google Scholar 

  • Kullman, L., 1999. Early Holocene tree growth at a high elevation site in the northernmost scandes of Sweden (Lapland): A palaeobiogeographical case study based on megafossil evidence. Geog. Ann. 81A: 63–74.

    Google Scholar 

  • Kutzbach, J. E., 1987. Model simulations of the climatic patterns during the deglaciation of North America. In Ruddiman, W. F. & H. E. Wright (eds), North America and Adjacent Oceans During the Last Deglaciation. Geol. Soc. Am., Boulder, Colorado, USA: 426–446.

    Google Scholar 

  • Kutzbach, J. E., P. J. Guetter, P. J. Behling & R. Selin, 1993. Simulated Climatic Changes: Results of the COHMAP Climate-Model Experiments. In Wright, H. E. Jr., J. E. Kutzbach, T. Webb III, W. F. Ruddiman, F. A. Street-Perrott & P. J. Bartlein (eds), Global Climates Since the Last Glacial Maximum. University of Minnesota Press, Minneapolis, 24–93.

    Google Scholar 

  • Laaksonen, K., 1979. A real distribution of monthly mean air temperatures in Fennoscandia (1921-1950). Fennia 157: 89–124.

    Google Scholar 

  • Lindström, M., J. Lundqvist & T. Lundqvist, 1991. Sveriges geologi frå n urtid till nutid. Student litteratur, Lund. 398 pp.

  • Lundqvist, J., 1998. Weichsel-istidens huvudfas. In Fredén, C. (ed.) Berg och Jord. National Atlas of Sweden. Stockholm, 124–135.

    Google Scholar 

  • MacDonald, G. M., R. P. Beukens & W. E Kieser, 1991. Radiocarbon dating of limnic sediments: A comparative analysis and discussion. Ecology 72: 1150–1155.

    Google Scholar 

  • MacDonald, G. M., T. W. D. Edwards, K. A. Moser, R. Pienitz & J. P. Smol, 1993. Rapid response of treeline vegetation and lakes to past climate warming. Nature 361: 243–246.

    Google Scholar 

  • Mäkelä, E., K. Sarmaja-Korjonen & H. Hyvärinen, 1994. Holocene forest history of the Pöyrisjärvi area north of the coniferous tree line in western Finnish Lapland: A pollen stratigraphical study. Bull. Geol. Soc. Finl. 66: 81–94.

    Google Scholar 

  • Matthews, J. A., 1978. Plant colonisation patterns on a gletchernvorfeld, southern Norway: A mesoscale geographical approach to vegetation change and phytometric dating. Boreas 7: 155–178.

    Google Scholar 

  • Moore, P. D., J. A. Webb & M. E. Collinson, 1991. Pollen analysis. Cambridge University Press, Cambridge. 216 pp.

    Google Scholar 

  • Nordseth, K., 1987. Climate and hydrology of Norden. In Varjo, U. & W. Tietze (eds), Norden. Man and Environment. Gebrüder Borntroeger, Berlin, 120–128.

    Google Scholar 

  • Prentice, H. C., 1981. A late Weichselian and early Flandrian pollen diagram from Østervatnet, Varanger Peninsula, NE Norway. Boreas 10: 53–70.

    Google Scholar 

  • Prentice, H. C., 1982. Late Weichselian and early Flandrian vegetational history of Varanger Peninsula, northeast Norway. Boreas 11: 187–208.

    Google Scholar 

  • Rannie, W. F., 1986. Summer air temperature and number of vascular species in Arctic Canada. Arctic 39: 133–137.

    Google Scholar 

  • Roberts, N. & H. E. Wright, Jr., 1993. Vegetational, lake-level and climatic history of the Near East and Southwest Asia. In Wright, H. E. Jr., J. E. Kutzbach, T. Webb III, W. F. Ruddiman, F. A. Street-Perrott & P. J. Bartlein (eds), Global Climates since the Last Glacial Maximum. University of Minnesota Press, Minneapolis: 194–220.

    Google Scholar 

  • Ruuhijärvi, R., 1963. Zur Entwicklungsgeschichte der nordfinnischen Hochmoore. Ann. Bot. Fenn. Soc. Zool. Bot. Fenn. ‘Vanamo’ 34: 1–40.

    Google Scholar 

  • Saarnisto, M., 1973. Contributions to the late-Quaternary history of the Lutto river valley, Finnish Lapland. Commentationes Physico-Mathematicae 43: 1–20.

    Google Scholar 

  • Seppä, H., 1996. Post-glacial dynamics of vegetation and tree-lines in the far north of Fennoscandia. Fennia 174: 1–96.

    Google Scholar 

  • Seppälä, M., 1971. Evolution of eolian relief of the Kaamasjoki-Kiellajoki river basin in Finnish Lapland. Fennia 104: 1–88.

    Google Scholar 

  • Sollid, J. L., S. Andersen, N. Hamre, O. Kjeldsen, O. Salvigsen, S. Sturöd, T. Tweita & A. Wilhelmsen, 1973: Deglaciation of Finnmark, North Norway. Norsk Geografisk Tidskrift 27: 233–325.

    Google Scholar 

  • Sonesson, M., 1968. Pollen zones at Abisko, Torne Lappmark, Sweden. Bot. Not. 121: 491–500.

    Google Scholar 

  • Sonesson, M., 1974. Late Quaternary development of the Torneträsk area, north Sweden: 2. Pollen analytical evidence. Oikos 25: 288–307.

    Google Scholar 

  • Sorsa, P., 1965. Pollenanalytische Untersuchungen zur spätquartären Vegetations – und Klimaentwicklung im östlichen Nordfinnland. Ann. Bot. Fenn. 2: 301–413.

    Google Scholar 

  • Thompson, R. S., C. Whitlock, P. J. Bartlein, S. P. Harrison & W. G. Spaulding, 1993. Climatic changes in the western United States since 18,000 yrs. In Wright, H. E. Jr., J. E. Kutzbach, T. Webb III, W. F. Ruddiman, F. A. Street-Perrott & P. J. Bartlein (eds), Global Climates since the Last Glacial Maximum. University of Minnesota Press, Minneapolis: 468–513.

    Google Scholar 

  • Tutin, T. G., N. A. Burges, A. O. Chater, J. R. Edmondson, V. H. Heywood, D. M. Moore, D. H. Valentine, S. M. Walter & D. A Webb, 1993. Flora Europaea I– V. 2. ed. Cambridge University Press, Cambridge.

    Google Scholar 

  • Walker, D. A, E. Binnian, B. M. Evans, N. D. Lederef, E. Nordstrand & J. Webber, 1989. Terrain, vegetation, and landscape evolution of the R4D research site, Brooks Range Foothills, Alaska. Holarc. Ecol. 12: 238–261.

    Google Scholar 

  • Vetaas, O. R., 1994. Primary succession of plant assemblages on a glacier foreland – Bø dalsbreen, southern Norway. J. Biogeogr. 21: 297–308.

    Google Scholar 

  • Woodward, F. I., 1987. Climate and plant distribution. Cambridge University Press, Cambridge, 174 pp.

    Google Scholar 

  • Wright Jr., H. E., 1976. The dynamic nature of Holocene vegetation. A problem in paleoclimatology, biogeography, and stratigraphical nomenclature. Quat. Res. 6: 581–596.

    Google Scholar 

  • Zetterberg, P., M. Eronen & K. R. Briffa, 1994. Evidence on climatic variability and prehistoric activities between 165 B.C. and A.D. 1400 derived from subfossil Scots pines (Pinus sylvestris L.) found in a lake in Utsjoki, northernmost Finnish Lapland. Bull. Geol. Soc. Finl. 66: 107–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seppä, H., Hammarlund, D. Pollen-stratigraphical evidence of Holocene hydrological change in northern Fennoscandia supported by independent isotopic data. Journal of Paleolimnology 24, 69–79 (2000). https://doi.org/10.1023/A:1008169800682

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008169800682

Navigation