Skip to main content
Log in

Modelling of β-Cyclodextrin with L-α-Aminoacids Residues

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

A computational study of host-guest inclusion complexes between β-cyclodextrin (β-CD) and the 20 natural L-α-aminoacids and some selected pentapeptides was carried out and aimed at understanding the nature of the driving forces and mechanism leading to their formation. Relative complexation energies for the complexes with β-CD were calculated in both cases and the solvation Gibbs free energies were also evaluated for the single L-α-aminoacids. The computed results indicate strong possibilities of formation of inclusion complexes between β-CD and single L-α-aminoacids as well as pentapeptides which have hydrophobic side chains. In addition, noteworthy interactions of the side chain of the pentapeptides with the β-CD were also elucidated. A detailed molecular dynamics calculation of one of the representative pentapeptide/β-CD inclusion complex (β-CD/CH3-Ala-Ala- TYR-Ala-Ala-CH3) in aqueous solution has also been carried out. Molecular dynamics calculations support aspects connected with the formation and description of hydrogen bonds and with the role of dispersion forces in the inclusion complex in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.A. Connors: Chem. Rev. 1325 (1997).

  2. B.S. Jursic, Z. Zdravkovski, and A.D. French: J. Mol. Struct. Theochem. 366, 113 (1996).

    Google Scholar 

  3. W. Saenger: ‘Structural aspects of cyclodextrins and their inclusion complexes’, in: J.L. Atwood, J.E.D. Davies, and D.D. MacNicol (eds.), Inclusion Compounds, Vol. 2, Academic Press, London (1984), pp. 231–259.

    Google Scholar 

  4. H.O. Ammar, M. Ghorab, S.A. Elnahas, S.M. Omar, and M.M. Ghorab: Pharmazie 51, 42 (1996).

    Google Scholar 

  5. M.R. Eftink and J.C. Harrison: Bioorg. Chem. 10, 388 (1981).

    Google Scholar 

  6. Y. Huroda, T. Hiroshige, S. Takashi, Y. Shiroiwa, H. Tanaka, and H. Ogoshi: J. Am. Chem. Soc. 111, 1912 (1989).

    Google Scholar 

  7. B. Manunza, S. Deiana, M. Pintore, G. Delogu, and C. Gessa: Carbohydr. Res. 300, 89 (1997).

    Google Scholar 

  8. Y. Liu, Y.-M. Zhang, S.-X. Sun, Y.-M. Li, and R.-T. Chen: J. Chem. Soc. Perkin Trans. 2, 1609 (1997).

  9. E. Alvira, J.A. Mayoral, and J.I. Garcia: Chem. Phys. Lett. 271, 178 (1997).

    Google Scholar 

  10. L. Prokai, R. Ramanathan, J. Nawrocki, and J. Eyler: J. Incl. Phenom. Mol. Rec. Chem. 25, 117 (1996).

    Google Scholar 

  11. M.S. Hora, J. Rubinfeld, W. Stern, and J. Gregory: International Patent No. WO 90/03784 (Chem. Abstr. 116, 1220 (1992)) (1990).

    Google Scholar 

  12. H. Barbara, T. Gengenbacher, A. Meinzer, and G. Gricker: Int. J. Pharm. 137, 103 (1996).

    Google Scholar 

  13. W.J. Irwin, A.K. Dwidevi, P.A. Holbrook, and M.J. Dey: Pharm. Res. 11, 1696 (1994).

    Google Scholar 

  14. J.F. Woodley, J. Blanco-Mendez, and S. Kenworthy: Proc. 21st Int. Symp. Controlled Release Bioact. Mater. 64–65 (1994).

  15. J. Coos Verhoef, N.G.M. Schipper, S.G. Romeijn, and F.W.H.M. Merkus: J. Controlled Release 29, 351 (1994).

    Google Scholar 

  16. T. Irie, H. Arima, K. Abe, K. Uekama, K. Matsubara, and T. Kuriki: Minutes 6th Int. Symp. Cyclodextrins 503–506 (1992).

  17. N. Karuppiah and A. Sharma: Biochem. Biophys. Res. Commun. 211, 60 (1995).

    Google Scholar 

  18. M.E. Brewster, M.S. Hora, J.W. Simpkins, and N. Bodor: Pharm. Res. 8, 792 (1991).

    Google Scholar 

  19. Y. Liu, Y.-M. Zhang, A.-D. Qi, R.-T. Chen, K. Yamamoto, T. Wada, and Y. Inoue: J. Org. Chem. 62, 1826 (1997).

    Google Scholar 

  20. S. Miertus, V. Frecer, E. Chiellini, F. Chiellini, R. Solaro, and J. Tomasi: J. Incl. Phenom. Mol. Rec. Chem. 32, 23–46 (1998).

    Google Scholar 

  21. J.E.H. Kohler, W. Saenger, and W.F. van Gunsteren: Eur. Biophys. J. 16, 153 (1998).

    Google Scholar 

  22. M. Prabhakara and S.C. Harvey: Biopolymers 26, 1087 (1987).

    Google Scholar 

  23. W.-Q. Tong, J.L. Lacj, T.-F. Chin, and J.K. Guillory: Pharm. Res. 8, 1307 (1991).

    Google Scholar 

  24. M.E. Amato, F. Djedaini, G.C. Pappalardo, B. Perly, and G. Scarlata: J. Pharm. Sci. 81, 1157 (1992).

    Google Scholar 

  25. D.W. Amstrong, T.J. Ward, R.D. Amstrong, and T.E. Beesley: Science 232, 1132 (1986).

    Google Scholar 

  26. M. Kitagawa, H. Hoshi, M. Sakurai, Y. Inoue, and R. Chujo: Bull. Chem. Soc. Jpn. 61, 4225 (1988).

    Google Scholar 

  27. N.S. Bodor, M.-J. Huang, and J.D. Watts: J. Pharm. Sci. 84, 330 (1995).

    Google Scholar 

  28. F.W. Lichtenhalter and S. Immel: Tetrahedron: Asymmetry 5, 2045 (1994).

    Google Scholar 

  29. Insight II User Guide: BIOSYM/MSI, San Diego, CA (1995).

  30. Discover User Guide: BIOSYM/MSI, San Diego, CA (1995).

  31. P.C. Manor and W. Saenger: J. Am. Chem. Soc. 96, 3639 (1974).

    Google Scholar 

  32. S. Miertus, E. Scrocco, and J. Tomasi: J. Chem. Phys. 55, 117 (1981).

    Google Scholar 

  33. S. Miertus and J. Tomasi: J. Chem. Phys. 65, 239 (1982).

    Google Scholar 

  34. T. Kozar and C.A. Venanzi: J. Mol. Struct. Theochem. 395–396, 451 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miertus, S., Nair, A.C., Frecer, V. et al. Modelling of β-Cyclodextrin with L-α-Aminoacids Residues. Journal of Inclusion Phenomena 34, 69–84 (1999). https://doi.org/10.1023/A:1008098708797

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008098708797

Navigation