Skip to main content
Log in

Self-Organized Criticality Applied to Natural Hazards

  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The concept of self-organizedcriticality evolved from studies of three simplecellular-automata models: the sand-pile, slider-block,and forest-fire models. In each case, there is asteady “input” and the “loss” is associated with afractal (power-law) distribution of “avalanches.” Each of the three models can be associated with animportant natural hazard: the sand-pile model withlandslides, the slider-block model with earthquakes,and the forest-fire model with forest fires. We showthat each of the three natural hazards havefrequency-size statistics that are well approximatedby power-law distributions. The model behaviorsuggests that the recurrence interval for a severeevent can be estimated by extrapolating the observedfrequency-size distribution of small and mediumevents. For example, the recurrence interval for amagnitude seven earthquake can be obtained directlyfrom the observed frequency of occurrence of magnitudefour earthquakes. This concept leads to thedefinition of a seismic intensity factor. Both globaland regional maps of this seismic intensity factor aregiven. In addition, the behavior of the modelssuggests that the risk of occurrence of large eventscan be substantially reduced if small events areencouraged. For example, if small forest fires areallowed to burn, the risk of a large forest fire issubstantially reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ACT Bush Fire Council: 1996, Season summaries, Electronic data available at the Firebreak Web Site (msowww.anu.edu.au/_barling/firebreak/firehistory.html).

  • Aki, K.: 1981, A probabilistic synthesis of precursory phenomena, In D. Simpson and P. Richards (eds), Earthquake Prediction, Amer. Geophys. Union, Washington, D.C., pp. 566–574.

    Google Scholar 

  • Bak, P., Chen, K., and Tang, C.: 1990, A forest-fire model and some thoughts on turbulence, Phys. Lett. A 147, 297–300.

    Google Scholar 

  • Bak, P. and Tang, C.: 1989, Earthquakes as a self-organized critical phenomenon, J. Geophys. Res. 94, 15, 635–15,637.

    Google Scholar 

  • Bak, P., Tang, C., and Wiesenfeld, K.: 1988, Self-organized criticality, Phys. Rev. A 38, 364–374.

    Google Scholar 

  • Blodgett, T. A.: 1998, Erosion rates on the NE escarpment of the Eastern Cordillera, Bolivia, derived from aerial photographs and thematic mapper images, PhD Thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Bretz, M., Cunningham, J. B., Kurczynski, P. L., and Nori, F.: 1992, Imaging of avalanches in granular materials, Phys. Rev. Lett. 69, 2431–2434.

    Google Scholar 

  • Burridge, R. and Knopoff, L.: 1967, Model and theoretical seismicity, Seism. Soc. Am. Bull. 57, 341–371.

    Google Scholar 

  • Carlson, J. M. and Langer, J. S.: 1989, Mechanical model of an earthquake fault, Phys. Rev. A 40, 6470–6484.

    Google Scholar 

  • Carlson, J. M., Langer, J. S., and Shaw, B. E.: 1994, Dynamics of earthquake faults, Rev. Mod. Phys. 66, 657–670.

    Google Scholar 

  • Christensen, K., Flyvbjerg, H., and Olami, Z.: 1993, Self-organized critical forest-fire model: Mean-field theory and simulation results in 1 to 6 dimensions, Phys. Rev. Lett. 71, 2737–2740.

    Google Scholar 

  • Clar, S., Drossel, B., and Schwabl, F.: 1996, Forest fires and other examples of self-organized criticality, J. Phys. Cond. Mat. 8, 6803–6824.

    Google Scholar 

  • Densmore, A. L., Anderson, R. S., McAdoo, G. B., and Ellis, M. A.: 1997, Hillslope evolution by bedrock landslides, Science 275, 369–372.

    Google Scholar 

  • Drossel, B. and Schwabl, F.: 1993, Forest-fire model with immune trees, Physica A 199, 183–197.

    Google Scholar 

  • Evernden, J. F.: 1970, Study of the regional seismicity and associated problems, Seism. Soc. Am. Bull. 60, 393–446.

    Google Scholar 

  • Evesque, P.: 1991, Analysis of statistics of sandpile avalanches using soil-mechanics results and concepts, Phys. Rev. A 43, 2720–2740.

    Google Scholar 

  • Feder, J.: 1995, The evidence for self-organized criticality in sand- pile dynamics, Fractals 3, 431–443.

    Google Scholar 

  • Grumbacher, S. K., McEwen, K. M, Halverson, D. A., Jacobs, D. T., and Lindner, J.: 1993, Selforganized criticality: an experiment with sandpiles, Am. J. Phys. 61, 329–335.

    Google Scholar 

  • Gutenberg, B. and Richter, C. F.: 1954, Seismicity of the Earth and Associated Phenomenon, 2nd edn, Princeton University Press, Princeton.

    Google Scholar 

  • Harp, E. L. and Jibson, R. L.: 1995, Inventory of landslides triggered by the 1994 Northridge, California earthquake, U.S. Geol. Surv. Open File Report 95-213.

  • Held, G. A., Solina, D. H., Keane, D. T., Haag, W. J., Horn, P. M., and Grinstein, G.: 1990, Experimental study of critical-mass fluctuations in an evolving sandpile, Phys. Rev. Lett. 65, 1120–1123.

    Google Scholar 

  • Henley, C. L.: 1993, Statics of a “self-organized” percolation model, Phys. Rev. Lett. 71, 2741–2744.

    Google Scholar 

  • Heyerdahl, E., Swanson, F., Berry, D., and Agee, K.: 1994, Fire History Database of the Western United States. Available at the H. J. Andrews Long-Term Ecological Research (LTER) database (www.fsl.orst.edu/lter/datafr.htm). Data sets provided by the Forest Science Data Bank, partnership between the Dept. of Forest Science, Oregon State Univ., and the U.S. Forest Service PacificNWResearch Station, Corvallis, OR. Significant funding for data provided by NSF LTER program (NSF grants BSR-90-11663 and DEB-96-32921).

  • Hovius, N., Stark, C. P., and Allen, P. A.: 1997, Sediment flux from a mountain belt derived by landslide mapping, Geology 25, 231–234.

    Google Scholar 

  • Huang, J., Narkounskaia, G., and Turcotte, D. L.: 1992, A cellular-automata, slider-block model for earthquakes: II, Demonstration of self-organized criticality for a 2-D system, Geophys. J. Int. 111, 259–269.

    Google Scholar 

  • Huang, J. and Turcotte, D. L.: 1990, Are earthquakes an example of deterministic chaos?, Geophys. Res. Lett. 17, 223–226.

    Google Scholar 

  • Johansen, A.: 1994, Spatio-temporal self-organization in a model of disease spreading, Physica D 78, 186–193.

    Google Scholar 

  • Johnston, A. C. and Nava, S. J.: 1985, Recurrence rates and probability estimates for the NewMadrid seismic zone, J. Geophys. Res. 90, 6737–6753.

    Google Scholar 

  • Johnston, A. C. and Schweig, E. S.: 1996, The enigma of the NewMadrid earthquakes of 1811- 1812, An. Rev. Earth Planet. Sci. 24, 339–384.

    Google Scholar 

  • Kadanoff, L. P., Nagel, S. R., Wu, L., and Zhou, S. M.: 1989, Scaling and universality in avalanches, Phys. Rev. A 39, 6524–6533.

    Google Scholar 

  • Kasischke, E. S. and French, N. H. F.: 1995, Locating and estimating the areal extent of wildfires in Alaskan boreal forest using multiple-season AVHRR NDVI composite data, Remote Sensing Environ. 51, 263–275.

    Google Scholar 

  • Kossobokov, V. G. and Turcotte, D. L.: 1996, A systematic global assessment of the seismic hazard, AGU National Meeting, EOS 77, F480.

    Google Scholar 

  • Nagel, S. R.: 1992, Instabilities in a sandpile, Rev. Mod. Phys. 64, 321–325.

    Google Scholar 

  • Narkounskaia, G. and Turcotte, D. L.: 1992, A cellular-automata, slider block model for earthquakes, I. Demonstration of chaotic behavior for a low order system, Geophys. J. Int. 111, 250–258.

    Google Scholar 

  • National Interagency Fire Center: 1996, Unpublished data obtained from Andrea Olson, Fire Management Branch, U.S. Fish and Wildlife Service, Boise, ID.

  • Nilsen, T. H., Bartow, J. A., Frizzell Jr., V. A., and Sims, J. D.: 1975, Preliminary photointerpretation maps of landslide and other surficial deposits of 56 7 1/2-minute quadrangles in the southeastern San Francisco Bay region, Alameda, Contra Costa, and Santa Clara counties, California, U.S. Geol. Surv. Open-File Report 75-0277.

  • Noever, D. A.: 1993, Himalayan sandpiles, Phys. Rev. E 47, 724–725.

    Google Scholar 

  • Ohmori, H. and Hirano, M.: 1988, Magnitude, frequency and geomorphological significance of rocky mudflows, land creep and the collapse of steep slopes, Z. Geomorphic. N.F. 67, 55–65.

    Google Scholar 

  • Ohmori, H. and Sugai, T.: 1995, Toward geomorphometric models for estimating landslide dynamics and forecasting landslide occurrence in Japanese mountains, Z. Geomorph. N. F. 101, 149–164.

    Google Scholar 

  • Pacheco, J., Scholz, C. H., and Sykes, L. R.: 1992, Changes in frequency-size relationship from small to large earthquakes, Nature 355, 71–73.

    Google Scholar 

  • Pelletier, J. D., Malamud, B. D., Blodgett, T. A., and Turcotte, D. L.: 1997, Scale-invariance of soil moisture variability and its implications for the frequency-size distribution of landslides, Eng. Geol. 48, 255–268.

    Google Scholar 

  • Puhl, H.: 1992, On the modeling of real sand piles, Physica A 182, 295–319.

    Google Scholar 

  • Rosendahl, J., Vekic, M., and Rutledge, J. E.: 1994, Persistent self-organization of sandpiles, Phys. Rev. Lett. 73, 537–540.

    Google Scholar 

  • Sasaki, Y., Abe, M., and Hirano, I.: 1991, Fractals of slope failure size-number distribution, J. Japan Sci. Eng. Geol. 32, 1–11.

    Google Scholar 

  • Sieh, K. E.: 1978, Slip along the San Andreas Fault associated with the great 1857 earthquake, Seism. Soc. Am. Bull. 68, 1421–1448.

    Google Scholar 

  • Sieh, K. E., Stuiver, M., and Brillinger, D.: 1989, Amore precise chronology of earthquakes produced by the San Andreas Fault in southern California, J. Geophys. Res. 94, 603–623.

    Google Scholar 

  • Sugai, T., Ohmori, H., and Hirano, M.: 1994, Rock control on magnitude-frequency distribution of landslide, Trans. Jap. Geomorph. Un. 15, 233–251.

    Google Scholar 

  • SCSN (Southern California Seismographic Network) Catalog: 1995, SCSN catalog in electronic format at the Southern California Earthquake Center (SCEC), Calif. Inst. of Tech., Pasadena, California.

    Google Scholar 

  • Turcotte, D. L.: 1997, Fractals and Chaos in Geology and Geophysics, 2nd edn, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • United States Geological Survey: 1996, Global Hypocenter Database, CD-ROM, supplemented by Preliminary Determination of Epicenters (PDE) catalog, National Earthquake Info. Center, U.S. Geol. Surv., Denver, CO.

  • Whitehouse, I. E. and Griffiths, G. A.: 1983, Frequency and hazard of large rock avalanches in the Southern Alps, New Zealand, Geology 11, 331–334.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malamud, B.D., Turcotte, D.L. Self-Organized Criticality Applied to Natural Hazards. Natural Hazards 20, 93–116 (1999). https://doi.org/10.1023/A:1008014000515

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008014000515

Navigation