Skip to main content
Log in

Cladocerans and chironomids as indicators of lake level changes in north temperate lakes

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Water level fluctuations affect the size of the pelagic zone relative to the size of littoral habitats, and thus may influence the relative abundance of remains from planktonic and littoral cladocerans in sediment. The application of this planktonic/littoral ratio for the reconstruction of past water level changes is discussed using examples of: (1) surficial profundal sediments from lakes of different water depths; (2) Holocene variation in a profundal sediment core; (3) horizontal variation in surficial sediments within a lake; and (4) long term variation in an inshore sediment core. The latter seemed to be the most promising application of this ratio. Maximum effects of water depth changes on the lake fauna are expected in the littoral zone. It is, however, difficult to read this effect directly from subfossil cladoceran and chironomid assemblages from inshore sediments as shown by a sediment profile from a site exposed to a long term decrease of water depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alhonen, P., 1970. On the significance of the planktonic/littoral ratio in the cladoceran stratigraphy of lake sediments. Comm. Biol. 35: 1–9.

    Google Scholar 

  • Brundin, L., 1956. Die bodenfaunistischen Seetypen und ihre Anwendung auf die Südhalbkugel. Rep. Inst. Freshw. Res. Drottningholm 37: 186–235.

    Google Scholar 

  • Deevey, E. S., 1955. The obliteration of the hypolimnion. Mem. Ist. ital. Idrobiol. 8: 9–38.

    Google Scholar 

  • Digerfeldt, G., 1986. Studies on past lakelevel changes. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley & Sons, Chichester: 127–143.

    Google Scholar 

  • Digerfeldt, G., 1988. Reconstruction and regional correlation of Holocene lake-level fluctuations in Lake Bysjöon, south Sweden. Boreas 17: 165–182.

    Google Scholar 

  • Flöoßner, D., 1972. Kiemen-und Blattfüußer, Branchiopoda, Fischl äause, Branchiura. Die Tierwelt Deutschlands 60: 1499.

    Google Scholar 

  • Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. J. Paleolimnol. 1: 179–191.

    Google Scholar 

  • Goulden, C. E., 1964. The history of the cladoceran fauna of Esth-waite Water (England) and its limnological significance. Arch. Hydrobiol. 60: 1–52.

    Google Scholar 

  • Gripp, K., 1953. Die Entstehung der ostholsteinischen Seen und ihrer Entwäasserung. Schr. geogr. Inst. Univ. Kiel, Schmieder-Festband, 11–26.

    Google Scholar 

  • Hofmann, W., 1986. Developmental history of the Großer Plöoner See and the Schöohsee (north Germany): cladoceran analysis, with special reference to eutrophication. Arch. Hydrobiol. Suppl. 74: 259–287.

    Google Scholar 

  • Hofmann, W., 1993. Dynamics of a littoral Cladocera assemblage under the influence of climatic and water depth changes. Verh. int. Ver. Limnol. 25: 1095–1101.

    Google Scholar 

  • Hofmann, W., 1996. Empirical relationships between cladoceran fauna and trophic state in thirteen northern German lakes: analysis of surficial sediments. Hydrobiologia 318: 195–201.

    Google Scholar 

  • Lundbeck, J., 1926. Die Bodentierwelt norddeuscher Seen. Arch. Hydrobiol. 7: 1–143.

    Google Scholar 

  • Mikulski, J. S., 1978. Value of some biological indices in case histories of lakes. Verh. int. Ver. Limnol. 20: 992–996.

    Google Scholar 

  • Mueller, W. P., 1964. The distribution of cladoceran remains in surficial sediments from three northern Indiana lakes. Invest. Indiana Lakes & Streams 6: 1–63.

    Google Scholar 

  • Overbeck, J. & R. J. Chrost (ed.), 1993. Microbial ecology of Lake Plußsee.Springer, New York, 392 pp.

    Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.

    Google Scholar 

  • Schernewski, G., 1992. Raumzeitliche Prozesse und Strukturen im Wasserköorper des Belauer Sees. EcoSys 1: 1–160.

    Google Scholar 

  • Schleuter, A., 1986. Die Chironomiden-Besiedlung stehender Kleingewäasser in Abhäangigkeit von Wasserfüuhrung und Fallaubeintrag. Arch. Hydrobiol. 105: 471–487.

    Google Scholar 

  • Schwerdtfeger, F., 1975. Synöokologie. Parey, Hamburg, Berlin, 451 pp.

    Google Scholar 

  • Sneath, H. A. & R. R. Sokal, 1973. Numerical taxonomy. Chapman & Hall, San Francisco, 573 pp.

    Google Scholar 

  • Whiteside, M. C. & M. R. Swindoll, 1988. Guidelines and limitations to cladoceran paleoecological interpretations. Palaeogeogr. Palaeoclim. Palaeoecol. 62: 405–412.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, W. Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. Journal of Paleolimnology 19, 55–62 (1998). https://doi.org/10.1023/A:1007999419765

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007999419765

Navigation