Skip to main content
Log in

Bounds on the Effective Anisotropic Elastic Constants

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Hill [12] showed that it was possible to construct bounds on the effective isotropic elastic coefficients of a material with triclinic or greater symmetry. Hill noted that the triclinic symmetry coefficients appearing in the bounds could be specialized to those of a greater symmetry, yielding the effective isotropic elastic coefficients for a material with any elastic symmetry. It is shown here that it is possible to construct bounds on the effective elastic constants of a material with any anisotropic elastic symmetry in terms of triclinic symmetry elastic coefficients. Similarly, it is then possible to specialize the triclinic symmetry coefficients appearing in the bounds to those of a greater symmetry. Specific bounds are given for the effective elastic coefficients of cubic, hexagonal, tetragonal and trigonal symmetries in terms of the elastic coefficients of triclinic symmetry. These results are obtained by combining the approach of Hill [12] with a representation of the stress-strain relations due, in principle, to Kelvin [25,26] but recast in the structure of contemporary linear algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. B. Balendran and S. Nemat-Nasser, Bounds on the elastic moduli of composites. J. Mech. Phys. Solids 43 (1995) 1825-1853.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. S.C. Cowin, The mechanical properties of cortical bone. In: S.C. Cowin (ed.), Bone Mechanics. CRC Press, Boca Raton, FL (1989) pp. 97-127.

    Google Scholar 

  3. S.C. Cowin, Properties of the anisotropic elasticity tensor. Quart. J. Mech. Appl. Math. 42 (1989) 249-267.

    MATH  MathSciNet  Google Scholar 

  4. S.C. Cowin and M.M. Mehrabadi, On the structure of the linear anisotropic elastic symmetries. J. Mech. Phys. Solids 40 (1992) 1459-1472.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. S.C. Cowin and M.M. Mehrabadi, Anisotropic symmetries of linear elasticity. Appl. Mech. Rev. 48 (1995) 247-285.

    Article  Google Scholar 

  6. S.C. Cowin, M.M. Mehrabadi and A.M. Sadegh, Kelvin formulation of the anisotropic Hooke's law. In: J.J. Wu, T.C.T. Ting and D.M. Barnett (eds.), Modern Theory of Anisotropic Elasticity and Applications. SIAM, Philadelphia, PA (1991) pp. 340-356.

    Google Scholar 

  7. S.C. Cowin and A.M. Sadegh, Non-interacting modes for stress, strain and energy in hard tissue. J. Biomechanics 24 (1991) 859-867.

    Article  Google Scholar 

  8. F.I. Fedorov, Theory of Elastic Waves in Crystals. New York, Plenum (1968).

    Google Scholar 

  9. I.M. Gelfand, Lectures on Linear Algebra. Dover, New York (1961).

    Google Scholar 

  10. M.E. Gurtin, The linear theory of elasticity. In: S. Flugge (ed.), Handbuch der Physik. Springer, Berlin (1972) pp. 1-296.

    Google Scholar 

  11. R.F.S. Hearmon, The elastic constants of anisotropic media-II. Phil. Mag. Suppl. 5 (1956) 323-382.

    MathSciNet  Google Scholar 

  12. R. Hill, The elastic behaviour of crystalline aggregate. Proc. Phys. Soc. A 65 (1952) 349-354.

    Article  ADS  Google Scholar 

  13. R. Hill, Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11 (1963) 357-372.

    Article  MATH  ADS  Google Scholar 

  14. R. James, R. Lipton and A. Lutoborski, Laminar elastic composites with crystallographic symmetry. SIAM J. Appl. Math. 50 (1990) 683-702.

    Article  MATH  MathSciNet  Google Scholar 

  15. F.F.P. Kollmann and W.A. Côté Jr., Principal of Wood Science and Technology, I Solid Wood. Springer, Berlin (1968).

    Google Scholar 

  16. R. Lipton, On the behavior of elastic composites with transverse isotropic symmetry. J. Mech. Phys. Solids 39 (1991) 663-681.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. R. Lipton, Optimal bounds on effective elastic tensors for orthotropic composites. Proc. Roy. Soc. London A 444 (1994) 399-410.

    MATH  MathSciNet  ADS  Google Scholar 

  18. R. Lipton, Composites with symmetry and their extremal properties. Internat. J. Solids Struct. 31 (1994) 3407-3417.

    Article  MATH  MathSciNet  Google Scholar 

  19. M.M. Mehrabadi and S.C. Cowin, Eigentensors of linear anisotropic elastic materials. Quart. J. Mech. Appl. Math. 43 (1990) 15-41.

    MATH  MathSciNet  Google Scholar 

  20. L. Mirsky, An Introduction to Linear Algebra. Dover, New York (1990).

    MATH  Google Scholar 

  21. S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials. North-Holland, Amsterdam (1993).

    MATH  Google Scholar 

  22. A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM 9 (1929) 49-58.

    MATH  Google Scholar 

  23. J. Rychlewski, On Hooke's law. Prikl. Matem. Mekhan. 48 (1984) 303-314.

    MathSciNet  Google Scholar 

  24. G. Strang, Linear Algebra and Its Applications, 2nd edn. Harcourt-Brace-Jovanovich, Boston (1980).

    Google Scholar 

  25. W.K. Thomson (Lord Kelvin), Elements of a mathematical theory of elasticity. Phil. Trans. Roy. Soc. 166 (1856) 481-498.

    Google Scholar 

  26. W.K. Thomson (Lord Kelvin), Elasticity. In: Encyclopaedia Britannica. Adam and Charles Black, Edinburgh (1878).

    Google Scholar 

  27. W. Voigt, Lehrbuch der Kristallphysik. Teubner, Leipzig (1928).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowin, S., Yang, G. & Mehrabadi, M. Bounds on the Effective Anisotropic Elastic Constants. Journal of Elasticity 57, 1–24 (1999). https://doi.org/10.1023/A:1007669330552

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007669330552