Skip to main content
Log in

New iron(III) complexes with thiosemicarbazones derived from 5-methyl-3-formylpyrazole

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

New iron(III) complexes of 5-methyl-3-formylpyrazole thiosemicarbazone (HMPzTS) and 5-methyl-3-formylpyrazole-4-phenylthiosemicarbazone (HMPzPTS), namely [Fe(MPzTS)2]X and [Fe(MPzPTS)2]X respectively, where X=Cl, NO3, SCN and ClO4, have been synthesised and physico-chemically characterised by magnetic measurements (polycrystalline state), electronic, i.r., e.s.r. and Mössbauer spectra. All are cationic complexes containing two monoprotonic tridentate ligands with NNS donor sites and an anionic counterpart; they behave as 1:1 electrolytes in MeOH/DMF. Coordination to central iron(III) via the pyrazolyl nitrogen (2N), the azomethine nitrogen and the thiolato sulphur atom is confirmed in the complexes from i.r. data. E.s.r. data (RT & LNT) reveal the presence of a spin-paired iron(III) cation with d2 xyd2 yzd1 xy configuration. The 57Fe Mössbauer spectral data (RT) are commensurate with the presence of two iron(III) spin states, the percentage of each being dependent upon the counterion of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. X. West, S. B. Padhey and P. B. Sonawane, Structure and Bonding, 76, 1 (1991).

    Google Scholar 

  2. L. A. Saryan, E. Ankel, C. Krishnamurti, D. H. Petering and H. Elford, J. Med. Chem., 22, 1218 (1979).

    Google Scholar 

  3. W. E. Antholine, J. M. Knight and D. H. Petering, J. Med. Chem., 19, 33 (1976).

    Google Scholar 

  4. H. K. Parwana, G. Singh and P. Talwar, Inorg. Chim. Acta, 108, 87 (1985).

    Google Scholar 

  5. N. Saha and N. Mukherjee, Polyhedron, 3, 1135 (1984); N. Saha and N. Mukherjee, Synth. React. Inorg. Met. Org. Chem., 14(B), 1151 (1984) and A. Mitra, T. Banerjee, P. Roychowdhury, S. Chaudhuri, P. Bera and N. Saha, Polyhedron, 16, 3735 1997.

    Google Scholar 

  6. W. J. Geary, Coord. Chem. Rev., 7, 81 (1971).

    Google Scholar 

  7. D. X. West, R. M. Makeever, J. P. Scovill and D. L. Klayman, Polyhedron, 3, 947 (1984).

    Google Scholar 

  8. V. J. Babar, D. V. Khasnis and V. M. Sinde, J. Ind. Chem. Soc., 58, 970 (1981).

    Google Scholar 

  9. S. K. Mondal, P. Paul, R. Roy and K. Nag, Transition Met. Chem., 9, 240 (1984).

    Google Scholar 

  10. B. Pradhan and D. V. Ramana Rao, J. Ind. Chem. Soc., 54, 136 (1977).

    Google Scholar 

  11. M. S. Patil and J. R. Shah, J. Ind. Chem. Soc., 58, 944 (1981).

    Google Scholar 

  12. R. C. Agarwal and T. R. Rao, J. Inorg. Nucl. Chem., 40, 1177 (1978).

    Google Scholar 

  13. J. R. Ferraro, Appl. Spectrosc., 23, 160 (1969).

    Google Scholar 

  14. A. D. Mighell, C. W. Reimann and A. Santoro, Acta. Crystallogr., B25, 595 (1969).

    Google Scholar 

  15. C. W. Reimann, A. Santoro and A. D. Mighell, Acta. Crystallogr., B26, 521 (1970).

    Google Scholar 

  16. N. Saha, A. Saha, S. Chaudhuri, T. C. W. Mak, T. Banerjee and P. Raychoudhury, Polyhedron, 11, 2341 (1992) and ref. therin.

    Google Scholar 

  17. N. Saha and K. M. Dutta, Synth. React. Inorg. Met. Org. Chem., 13, 683 (1983).

    Google Scholar 

  18. M. M. Mostafa, A. M. Shallaby and A. A. El-Asmy, J. Inorg. Nucl. Chem., 43, 2992 (1981).

    Google Scholar 

  19. F. A. Cotton, Coord. Chem. Rev., 8, 185 (1972).

    Google Scholar 

  20. A. H. Ewald, R. L. Martin, E. Sinn and A. H. White, Inorg. Chem., 8, 1837 (1969).

    Google Scholar 

  21. R. Raina and T. S. Srivastava, Inorg. Chim. Acta, 67, 83 (1992) and R. Raina and T. S. Srivastava, Inorg. Chim. Acta, 91, 137 (1984).

    Google Scholar 

  22. R. Davis, Coord. Chem. Rev., 41, 1 (1982).

    Google Scholar 

  23. D. X. West, P. M. Ahrweiler, G. Ertem, J. P. Scovill, D. L. Klayman, J. L. Flippen-Anderson, R. Gilardi, C. George and L. K. Pannell, Transition Met. Chem., 10, 264 (1985) and B. S. Garg, M. R. P. Kurap, S. K. Jain and Y. K. Bhoon, Transition Met. Chem., 13, 247 (1988).

    Google Scholar 

  24. S. K. Jain, B. S. Garg and Y. K. Bhoon, Transition Met. Chem., 11, 89 (1986) and S. K. Jain, B. S. Garg and Y. K. Bhoon, Spectrochim. Acta, 42A, 959 (1986).

    Google Scholar 

  25. E. C. Constable and P. J. Steel, Coord. Chem. Rev., 93, 205 (1989).

    Google Scholar 

  26. E. Von Meerwall, Compt. Phys. Comn, 9, 117 (1975).

    Google Scholar 

  27. U. Ganser, Topics in Applied Physics, Mössbauer Spectroscopy, Springer Verlag, Berlin, 5, 1975, pp. 68 and 69.

    Google Scholar 

  28. N. N. Greenwood and T. C. Gibb, Mössbauer Spectroscopy, Chapman and Hall Ltd., London, 1971, pp. 91 & 148–193.

    Google Scholar 

  29. J. R. Dilworth, S. D. Howe, A. J. Hudson, J. R. Miller, J. Silver, R. M. Thompson, M. Harman and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 3553 (1994).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bera, P., Saha, N., Kumar, S. et al. New iron(III) complexes with thiosemicarbazones derived from 5-methyl-3-formylpyrazole. Transition Metal Chemistry 24, 425–430 (1999). https://doi.org/10.1023/A:1006919018997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006919018997

Keywords

Navigation