Skip to main content
Log in

Lifetime reproductive output in a hermaphrodite cestode when reproducing alone or in pairs: a time cost of pairing

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The cestode Schistocephalus solidus is a facultatively self-fertilising simultaneous hermaphrodite. Here we test for differences in the starting point, the rate, and the magnitude of egg production between individuals allowed to reproduce alone (only self-fertilisation possible) or in pairs (both self- and cross-fertilisation possible). Specifically, we want to distinguish between alternative processes responsible for the lower egg production in paired individuals observed in an earlier study (Wedekind et al., 1998). We designed an improved in vitro system, replacing the bird final host that allows us to measure, with high temporal resolution, the timing and magnitude of lifetime egg production of worms in these two social situations. We found that the experimental groups did not differ significantly in the starting point of egg production. However, the temporal pattern in egg production differed between them, in that paired individuals had a lower rate of egg production. This, however, did not lead to a significant reduction in lifetime egg production, as pairs compensated for the lower rate by producing eggs longer than single individuals. We argue that the lower rate of egg production may nevertheless lead to a time cost of pairing in the study species, and that this cost is likely to represent a cost of outcrossing due to sexual selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, M. and Iwasa, Y. (1996) Sexual selection. Trends Ecol. Evol. 11, 53–58.

    Article  Google Scholar 

  • Charlesworth, D. and Charlesworth, B. (1987) Inbreeding depression and its evolutionary consequences. Ann. Rev. Ecol. Syst. 18, 237–268.

    Article  Google Scholar 

  • Charnov, E.L. (1979) Simultaneous hermaphroditism and sexual selection. Proc. Natl. Acad. Sci. USA 76, 2480–2484.

    Article  PubMed  Google Scholar 

  • Charnov, E.L. (1982) The Theory of Sex Allocation. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • Coulter Electronics Limited. (1994) Coulter MultiSizer II, Reference Manual 9912433-C. Coulter Electronics Limited, Luton, England.

    Google Scholar 

  • Cunningham, E.J.A. and Birkhead, T.R. (1998) Sex roles and sexual selection. Anim. Behav. 56, 1311–1321.

    Article  PubMed  Google Scholar 

  • Ghiselin, M.T. (1969) The evolution of hermaphroditism among animals. Q. Rev. Biol. 44, 189–208.

    Article  PubMed  CAS  Google Scholar 

  • Greeff, J.M. and Michiels, N.K. (1999a) Low potential for sexual selection in simultaneously hermaphroditic animals. Proc. R. Soc. Lond. B 266, 1671–1676.

    Article  Google Scholar 

  • Greeff, J.M. and Michiels, N.K. (1999b) Sperm digestion and reciprocal sperm transfer can drive hermaphrodite sex allocation to equality. Am. Nat. 153, 421–430.

    Article  Google Scholar 

  • Hopkins, C.A. (1952) Studies on cestode metabolism. II. The utilization of glycogen by Schistocephalus solidus in vitro. Exp. Parasitol. 1, 196–213.

    Article  Google Scholar 

  • Hopkins, C.A. and Smyth, J.D. (1951) Notes on the morphology and life history of Schistocephalus solidus (Cestoda: Diphyllobothriidae). Parasitology 41, 283–291.

    PubMed  CAS  Google Scholar 

  • Jarne, P. and Charlesworth, D. (1993) The evolution of the selfing rate in functionally hermaphrodite plants and animals. Ann. Rev. Ecol. Syst. 24, 441–466.

    Article  Google Scholar 

  • Jarne, P. and Delay, B. (1990) Inbreeding depression and self-fertilisation in Lymnaea peregra (Gastropoda: Pulmonata). Heredity 64, 169–175.

    Google Scholar 

  • Leonard, J.L. and Lukowiak, K. (1984) Male-female conflict in a simultaneous hermaphrodite resolved by sperm trading. Am. Nat. 124, 282–286.

    Article  Google Scholar 

  • Lewis, W.M.J. (1987) The cost of sex. In S.C. Stearns (ed) The evolution of sex and its consequences. Birkhäuser Verlag, Basel, Switzerland, pp. 33–57.

    Google Scholar 

  • Lloyd, D.G. (1980) Benefits and handicaps of sexual reproduction. Evol. Biol. 13, 69–107.

    Google Scholar 

  • McCaig, M.L.O. and Hopkins, C.A. (1963) Studies on Schistocephalus solidus. II. Establishment and longevity in the definitive host. Exp. Parasitol. 13, 273–283.

    Article  Google Scholar 

  • Michiels, N.K. (1998) Mating conflicts and sperm competition in simultaneous hermaphrodites. In T.R. Birkhead and A.P. Møller (eds) Sperm competition and sexual selection. Academic Press, London, England, pp. 219–254.

    Google Scholar 

  • Nollen, P.M. (1975) Studies on the reproductive system of Hymenolepis diminuta using autoradiography and transplantation. J. Parasitol. 61, 100–104.

    Article  PubMed  CAS  Google Scholar 

  • Nollen, P.M. (1983) Patterns of sexual reproduction among parasitic platyhelminths. Parasitology 86, 99–120.

    Article  PubMed  Google Scholar 

  • Nollen, P.M. (1997) Mating behaviour of Echinostoma caproni and E. trivolvis in concurrent infections in hamsters. Int. J. Parasitol. 27, 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Rice, W.R. and Gaines, S.D. (1994) 'Heads I win, tails you lose': testing directional alternative hypotheses in ecological and evolutionary research. Trends Ecol. Evol. 9, 235–237.

    Article  Google Scholar 

  • Ricklefs, R.E. (1967) A graphical method of fitting equations to growth curves. Ecology 48, 978–983.

    Article  Google Scholar 

  • Sall, J. and Lehman, A. (1996) JMP Start Statistics: A Guide to Statistical and Data Analysis using JMP and JMPIN Software. Duxbury Press, Belmont, USA.

    Google Scholar 

  • Schmitt, J. and Ehrhardt, D.W. (1990) Enhancement of inbreeding depression by dominance and suppression in Impatiens capensis. Evolution 44, 269–278.

    Article  Google Scholar 

  • Smyth, J.D. (1946) Studies on tapeworm physiology. I. The cultivation of Schistocephalus solidus in vitro. J. Exp. Biol. 23, 47–73.

    Google Scholar 

  • Smyth, J.D. (1952) Studies on tapeworm physiology. VI. Effect of temperature on the maturation in vitro of Schistocephalus solidus. J. Exp. Biol. 29, 304–309.

    Google Scholar 

  • Smyth, J.D. (1954) Studies on tapeworm physiology. VII. Fertilization of Schistocephalus solidus in vitro. Exp. Parasitol. 3, 64–71.

    Article  PubMed  CAS  Google Scholar 

  • Tierney, J.F. and Crompton, D.W.T. (1992) Infectivity of plerocercoids of Schistocephalus solidus (Cestoda: Ligulidae) and fecundity of the adults in an experimental definitive host, Gallus gallus. J. Parasitol. 78, 1049–1054.

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson, J. (1966) The advantage of hermaphroditism and parthenogenesis. J. Theor. Biol. 11, 54–58.

    Article  PubMed  CAS  Google Scholar 

  • Trouvé, S., Jourdane, J., Renaud, F., Durand, P. and Morand, S. (1999) Adaptive sex allocation in a simultaneous hermaphrodite. Evolution 53, 1599–1604.

    Article  Google Scholar 

  • Trouvé, S., Renaud, F., Durand, P. and Jourdane, J. (1996) Selfing and outcrossing in a parasitic hermaphrodite helminth (Trematoda, Echinostomatidae). Heredity 77, 1–8.

    Article  Google Scholar 

  • Wedekind, C. (1997) The infectivity, growth, and virulence of the cestode Schistocephalus solidus in its first intermediate host, the copepod Macrocyclops albidus. Parasitology 115, 317–324.

    Article  PubMed  Google Scholar 

  • Wedekind, C. and Rüetschi, A. (2000) Parasite heterogeneity affects infection success and the occurrence of within-host competition: an experimental study with a cestode (preprint edition). Evol. Ecol. Res. 〈http://www.evolutionary-ecology.com/forthcoming.html〉

  • Wedekind, C., Strahm, D. and Schärer, L. (1998) Evidence for strategic egg production in a hermaphroditic cestode. Parasitology 117, 373–382.

    Article  PubMed  Google Scholar 

  • Williams, H.H. and McVicar, A. (1968) Sperm transfer in tetraphyllidea (Platyhelminthes: Cestoda). Nytt Mag. Zool. 16, 61–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schärer, L., Wedekind, C. Lifetime reproductive output in a hermaphrodite cestode when reproducing alone or in pairs: a time cost of pairing. Evolutionary Ecology 13, 381–394 (1999). https://doi.org/10.1023/A:1006789110502

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006789110502

Navigation