Skip to main content
Log in

Fas (CD95, Apo-1) Ligand Gene Transfer

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Gene therapy represents a new form of medical intervention that relies on direct transfer of genetic materials into patients. Although initially envisioned as a treatment for genetic diseases, gene therapy is currently being explored for a wide range of acquired disorders including cancer, cardiovascular diseases, arthritis, and neurodegenerative disorders. Since most acquired diseases are not caused by single gene mutations, the choice of therapeutic genes is crucial for the success of the gene therapy. In this review, we discuss the progresses that have been made and problems that remain to be resolved in using Fas (CD95, Apo-1) ligand gene for the treatment of acquired disorders. Fas ligand is a member of the tumor necrosis factor family that can induce both apoptosis and activation of various cells. While Fas ligand gene transfer indeed eliminates cancer cells and inflammatory cells through apoptosis, it also kills normal cells and initiates inflammation in certain tissues. Thus, new strategies that can modify the apoptotic or proinflammatory activities of the FasL will help to fully realize the potential of the FasL gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Trauth BC, Klas C, Peters AM, Matzku S, Moller P, Falk W, Debatin KM, Krammer PH: Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245:301, 1989

    PubMed  Google Scholar 

  2. Nagata S, Golstein P: The Fas death factor. Science 267:1449, 1995

    PubMed  Google Scholar 

  3. Nagata S: Apoptosis by death factor. Cell 88:355, 1997

    Article  PubMed  Google Scholar 

  4. Nagata S, Suda T: Fas and Fas ligand: lpr and gld mutations. Immunol Today 16:39, 1995

    PubMed  Google Scholar 

  5. Arase H, Arase N, Saito T: Fas-mediated cytotoxicity by freshly isolated natural killer cells. J Exp Med 181:1235, 1995

    PubMed  Google Scholar 

  6. Suda T, Okazaki T, Naito Y, Yokota T, Arai N, Ozaki S, Nakao K, Nagata S: Expression of the Fas ligand in cells of T cell lineage. J Immunol 154:3806, 1995

    PubMed  Google Scholar 

  7. Nagata S: Fas and FasL: A death factor and its receptor. Adv Immunol 57:129, 1996

    Google Scholar 

  8. Ramsdell F, Seaman MS, Miller RE, Tough TW, Alderson MR, Lynch DH: gld/gld mice are unable to express a functional ligand for Fas. Eur J Immunol 24:928, 1994

    PubMed  Google Scholar 

  9. Takahashi T, Tanaka M, Brannan CI, Jenkins NA, Copeland NG, Suda T, Nagata S: Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76:969, 1994

    Article  PubMed  Google Scholar 

  10. Abbas AK: Die and let live: Eliminating dangerous lymphocytes. Cell 84:655, 1996

    PubMed  Google Scholar 

  11. Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French LE, Schneider P, Bornand T, Fontana A, Lienard D, Cerottini J, Tschopp J: Melanoma cell expression of Fas(Apo-1/CD95) ligand: Implications for tumor immune escape. Science 274:1363, 1996

    PubMed  Google Scholar 

  12. Arai H, Chan SY, Bishop DK, Nabel GJ: Inhibition of the alloantibody response by CD95 ligand. Nature Med 3:843, 1997

    PubMed  Google Scholar 

  13. Seino K, Kayagaki N, Okumura K, Yagita H: Antitumor effect of locally produced CD95 ligand. Nat Med 3:165, 1997

    PubMed  Google Scholar 

  14. Galle PR, Hofmann WJ, Walczak H, Schaller H, Otto G, Stremmel W, Krammer PH, Runkel L: Involvement of the CD95 (Apo-1/Fas) receptor and ligand in liver damage. J Exp Med 182:1223, 1995

    PubMed  Google Scholar 

  15. Boudet F, Lecoeur H, Gougeon ML: Apoptosis associated with ex vivo down-regulation of Bcl-2 and up-regulation of Fas in potential cytotoxic CD81 T lymphocytes during HIV infection. J Immunol 156:2282, 1996

    PubMed  Google Scholar 

  16. De Maria R, Boirivant M, Cifone MG, Roncaioli P, Hahne M, Tschopp J, Pallone F, Santoni A, Testi R: Functional expression of Fas and Fas ligand on human gut lamina propria T lymphocytes. A potential role for the acidic sphingomyelinase pathway in normal immunoregulation. J Clin Invest 97:316, 1996

    PubMed  Google Scholar 

  17. Peter ME, Kischkel FC, Scheuerpflug CG, Medema JP, Debatin KM, Krammer PH: Resistance of cultured peripheral T cells towards activation-induced cell death involves a lack of recruitment of FLICE (MACH/caspase 8) to the CD95 death-inducing signaling complex. Eur J Immunol 27:1207, 1997

    PubMed  Google Scholar 

  18. Cifone MG, Roncaioli P, De Maria R, Camarda G, Santoni A, Ruberti G, Testi: Multiple pathways originate at the Fas/APO-1 (CD95) receptor: Sequential involvement of phosphatidylcholinespecific phospholipase C and acidic sphingomyelinase in the propagation of the apoptotic signal. EMBO J 14:5859, 1995

    PubMed  Google Scholar 

  19. Martin SJ, Green DR: Protease activation during apoptosis: Death by a thousand cuts? Cell 82:349, 1995

    Article  PubMed  Google Scholar 

  20. Testi R: Sphingomyelin breakdown and cell fate. Trends Biochem Sci 21:468, 1996

    PubMed  Google Scholar 

  21. Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ: A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288:2351, 2000

    PubMed  Google Scholar 

  22. Chinnaiyan AM, O'Rourke K, Tewari M, Dixit VM: FADD, a novel death domain-containing protein, interact with the death domain of Fas and initiates apoptosis. Cell 81:505, 1995

    PubMed  Google Scholar 

  23. Zhang J, Cado D, Chen A, Kabra NH, Winoto A: Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392:296, 1998

    PubMed  Google Scholar 

  24. Boldin MP, Goncharov TM, Goltsev YV, Wallach D: Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/ APO-1-and TNF receptor-induced cell death. Cell 85:803, 1996

    Article  PubMed  Google Scholar 

  25. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM: An induced proximity model for caspase-8 activation. J Biol Chem 273:2926, 1998

    PubMed  Google Scholar 

  26. Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME: Cytotoxicity-dependent APO-1 (Fas/ CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579, 1995

    PubMed  Google Scholar 

  27. Yang X, Chang HY, Baltimore D: Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell 1:319, 1998

    PubMed  Google Scholar 

  28. Enari M, Talanian RV, Wong WW, Nagata S: Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature 380:723, 1996

    PubMed  Google Scholar 

  29. Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM: FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85:817, 1996

    Article  PubMed  Google Scholar 

  30. Villa P, Kaufmann SH, Earnshaw WC: Caspases and caspase inhibitors. Trends Biochem Sci 22:388, 1997

    Article  PubMed  Google Scholar 

  31. Yang X, Khosravi-Far R, Chang HY, Baltimore D: Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89:1067, 1997

    Article  PubMed  Google Scholar 

  32. Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, Burns K, Bodmer JL, Schroter M, Scaffidi C, Krammer PH, Peter ME, Tschopp J: Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386:517, 1997

    Article  PubMed  Google Scholar 

  33. Wallach D: Apoptosis. Placing death under control. Nature 388:125, 1997

    Google Scholar 

  34. Colombo MP, Forni G: Cytokine gene transfer in tumor inhibition and tumor therapy: Where are we now? Immunol Today 15:48, 1994

    PubMed  Google Scholar 

  35. Arai H, Gordon D, Nabel EG, Nabel GJ: Gene transfer of Fas ligand induces tumor regression in vivo. Proc Natl Acad Sci USA 94:13862, 1997

    PubMed  Google Scholar 

  36. Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC: A role for CD95 ligand in preventing graft rejection. Nature 377:630, 1995

    PubMed  Google Scholar 

  37. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA: Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270:1189, 1995

    PubMed  Google Scholar 

  38. Lau HT, Yu M, Fontana A, Stoeckert CJ: Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science 273:109, 1996

    PubMed  Google Scholar 

  39. Chen JJ, Sun Y, Nabel GJ: Regulation of the proinflammatory effects of Fas ligand (CD95L). Science 282:1714, 1998

    PubMed  Google Scholar 

  40. Liles WC, Kiener PA, Ledbetter JA, Aruffo A, Klebanoff SJ: Differential expression of Fas (CD95) and Fas ligand on normal human phagocytes: Implications for the regulation of apoptosis in neutrophils. J Exp Med 184:429, 1996

    PubMed  Google Scholar 

  41. Arnold B, Schonrich G, Hammerling GJ: Multiple levels of peripheral tolerance. Immunol Today 14:12, 1993

    PubMed  Google Scholar 

  42. Kabelitz D, Janssen O: Antigen-induced death of T-Lymphocytes. Front Biosci 2:d61, 1997

    PubMed  Google Scholar 

  43. Wang J, Nonomura N, Ichimaru N, Azuma H, Hatori M, Kokado Y, Matsumiya K, Miki T, Takahara S, Okuyama A: Expression of Fas and Fas ligand in renal grafts with acute and chronic rejection in the rat model. J Interferon Cytokine Res 17:369, 1997

    PubMed  Google Scholar 

  44. Krams SM, Egawa H, Quinn MB, Villanueva JC, Garcia-Kennedy R, Martinez OM: Apoptosis as a mechanism of cell death in liver allograft rejection. Transplantation 59:621, 1995

    PubMed  Google Scholar 

  45. Fayyazi A, Schlemminger R, Gieseler R, Peters JH, Radzun HJ: Apoptosis in the small intestinal allograft of the rat. Transplantation 63:947, 1997

    PubMed  Google Scholar 

  46. Szabolcs M, Michler RE, Yang X, Aji W, Roy D, Athan E, Sciacca RR, Minanov OP, Cannon PJ: Apoptosis of cardiac myocytes during cardiac allograft rejection. Relation to induction of nitric oxide synthase. Circulation 94:1665, 1996

    PubMed  Google Scholar 

  47. Bergese SD, Klenotic SM, Wakely ME, Sedmak DD, Orosz CG: Apoptosis in murine cardiac grafts. Transplantation 63:320, 1997

    PubMed  Google Scholar 

  48. Sharma VK, Bologa RM, Li B, Xu GP, Lagman M, Hiscock W, Mouradian J, Wang J, Serur D, Rao VK, Suthanthiran M: Molecular executors of cell death-differential 71 intrarenal expression of Fas ligand, Fas, Granzyme B, and perforin during acute and/or chronic rejection of human renal allografts. Transplantation 62:1860, 1996

    PubMed  Google Scholar 

  49. Larsen CP, Alexander DZ, Hendrix R, Ritchie SC, Pearson TC: Fas-mediated cytotoxicity. An immunoeffector or immunoregulatory pathway in T cell-mediated immune responses? Transplantation 60:221, 1995

    PubMed  Google Scholar 

  50. Jollow KC, Sundstrom JB, Gravanis MB, Kanter K, Herskowitz A, Ansari AA: Apoptosis of mononuclear cell infiltrates in cardiac allograft biopsy specimens questions studies of biopsy-cultured cells. Transplantation 63:1482, 1997

    PubMed  Google Scholar 

  51. Qian S, Lu L, Fu F, Li Y, Li W, Starzl TE, Fung JJ, Thomson AW: Apoptosis within spontaneously accepted mouse liver allografts: Evidence for deletion of cytotoxic T cells and implications for tolerance induction. J Immunol 158:4654, 1997

    PubMed  Google Scholar 

  52. Allison J, Georgiou HM, Strasser A, Vaux DL: Transgenic expression of CD 95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proc Natl Acad Sci USA 94:3943, 1997

    PubMed  Google Scholar 

  53. Kang SM, Schneider DB, Lin Z, Hanahan D, Dichek DA, Stock PG, Baekkeskov S: Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat Med 3:738, 1997

    PubMed  Google Scholar 

  54. Stuart PM, Griffith TS, Usui N, Pepose J, Yu X, Ferguson TA: CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest 99:396, 1997

    PubMed  Google Scholar 

  55. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S: Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314, 1992

    Article  PubMed  Google Scholar 

  56. Drappa J, Vaishnaw AK, Sullivan KE, Chu JL, Elkon KB: Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity. N Engl J Med 335:1643, 1996

    PubMed  Google Scholar 

  57. Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY, Strober W, Lenardo MJ, Puck JM: Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81:935, 1995

    PubMed  Google Scholar 

  58. Griffith TS, Yu X, Herndon JM, Green DR, Ferguson TA: CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance. Immunity 5:7, 1996

    PubMed  Google Scholar 

  59. Tisch R, McDevitt H: Insulin-dependent diabetes mellitus. Cell 85:291, 1996

    PubMed  Google Scholar 

  60. Itoh N, Imagawa A, Hanafusa T, Waguri M, Yamamoto K, Iwahashi H, Moriwaki M, Nakajima H, Miyagawa J, Namba M, Makino S, Nagata S, Kono N, Matsuzawa Y: Requirement of Fas for the development of autoimmune diabetes in nonobese diabetic mice. J Exp Med 186:613, 1997

    PubMed  Google Scholar 

  61. Bauer J, Ruuls SR, Huitinga I, Dijkstra CD: The role of macrophage subpopulations in autoimmune disease of the central nervous system. Histochem J 28:83, 1996

    PubMed  Google Scholar 

  62. Martin R, McFarland HF, McFarlin DE: Immunological aspects of demyelinating diseases. Annu Rev Immunol 10:153, 1992

    PubMed  Google Scholar 

  63. Sabelko KA, Kelly KA, Nahm MH, Cross AH, Russell JH: Fas and Fas ligand enhance the pathogenesis of experimental allergic encephalomyelitis, but are not essential for immune privilege in the central nervous system. J Immunol 159:3096, 1997

    PubMed  Google Scholar 

  64. Waldner H, Sobel RA, Howard E, Kuchroo VK: Fas-and FasLdeficient mice are resistant to induction of autoimmune encephalomyelitis. J Immunol 159:3100, 1997

    PubMed  Google Scholar 

  65. Liu TS, Hillard B, Samoilova EB, Chen Y: Differential roles of Fas ligand in spontaneous and actively induced autoimmune encephalomyelitis. Clin Immunol 95:203, 2000

    PubMed  Google Scholar 

  66. Suvannavejh GC, Dal Canto MC, Matis LA, Miller SD: Fasmediated apoptosis in clinical remissions of relapsing experimental autoimmune encephalomyelitis. J Clin Invest 105:223, 2000

    PubMed  Google Scholar 

  67. D'souza SD, Bonetti B, Balasingam V, Cashman NR, Barker PA, Troutt AB, Raine CS, Antel JP: Multiple sclerosis: Fas signaling in oligodendrocyte cell death. J Exp Med 184:2361, 1996

    PubMed  Google Scholar 

  68. Cantwell MJ, Hua T, Zvaifler NJ, Kipps TJ: Deficient Fas ligand expression by synovial lymphocytes from patients with rheumatoid arthritis. Arthritis Rheum 40:1644, 1997

    PubMed  Google Scholar 

  69. Fujisawa K, Asahara H, Okamoto K, Aono H, Hasunuma T, Kobata T, Iwakura Y, Yonehara S, Sumida T, Nishioka K: Therapeutic effect of the anti-Fas antibody on arthritis in HTLV-1 tax transgenic mice. J Clin Invest 98:271, 1996

    PubMed  Google Scholar 

  70. Zhang H, Yang Y, Horton JL, Samoilova EB, Judge TA, Turka LA, Wilson JM, Chen Y: Amelioration of collagen-induced arthritis by CD95 (Apo-1/Fas)-ligand gene transfer. J Clin Invest 100:1951, 1997

    PubMed  Google Scholar 

  71. Chervonsky AV, Wang Y, Wong FS, Visintin I, Flavell RA, Janeway CA, Matis LA: The role of Fas in autoimmune diabetes. Cell 89:17, 1997

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamhamedi-Cherradi, SE., Chen, Y. Fas (CD95, Apo-1) Ligand Gene Transfer. J Clin Immunol 21, 24–29 (2001). https://doi.org/10.1023/A:1006784830473

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006784830473

Navigation