Skip to main content
Log in

Lennard–Jones Chain Model for Self-Diffusion of n-Alkanes

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The Lennard–Jones chain model, which was developed from the equation for the self-diffusion coefficient in a Lennard–Jones fluid and the molecular dynamics simulation data of a tangent hard-sphere chain fluid, is used to calculate the self-diffusion coefficient of n-alkanes. n-Alkanes are characterized by a Lennard–Jones segment diameter, a segment–segment interaction energy, and a chain length expressed as the number of segments. The equation represents the experimental self-diffusion coefficients with an average absolute deviation of 3.93% for 16 n-alkanes covering wide ranges of temperature and pressure. The correlated results are compared with those of the rough Lennard–Jones model. A generalized version of the Lennard–Jones chain model is presented which requires only the carbon number in order to predict n-alkane self-diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th ed. (McGraw-Hill, New York, 1987), pp. 577-611, 656-732.

    Google Scholar 

  2. S. Chapman and T. G. Cowling, The Mathematical Theory of Non Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, UK, 1970), pp. 257-268.

    Google Scholar 

  3. J. M. Kincaid, R.-F. Tu, and M. L. de Haro, Mol. Phys. 81:837 (1994).

    Google Scholar 

  4. R. J. Speedy, Mol. Phys. 62:509 (1987).

    Google Scholar 

  5. R. J. Speedy, F. X. Prielmeier, T. Vardag, E. W. Lang, and H.-D. Ludemann, Mol. Phys. 66:577 (1989).

    Google Scholar 

  6. E. Ruckenstein and H. Liu, Ind. Eng. Chem. Res. 36:3927 (1997).

    Google Scholar 

  7. D. Chandler, J. Chem. Phys. 62:1358 (1975).

    Google Scholar 

  8. J. H. Dymond, Chem. Soc. Rev. 14:317 (1985).

    Google Scholar 

  9. T. Vardag, N. Karger, and H.-D. Ludemann, Ber. Bunsenges Phys. Chem. 95:859 (1991).

    Google Scholar 

  10. T. F. Sun, J. Bleazard, and A. S. Teja, J. Phys. Chem. 98:1306 (1994).

    Google Scholar 

  11. P. H. Salim and M. A. Trebble, J. Chem. Soc. Faraday Trans. 91:245 (1995).

    Google Scholar 

  12. M. Mondello and G. S. Grest, J. Chem. Phys. 103:7156 (1995).

    Article  Google Scholar 

  13. M. Mondello, G. S. Grest, E. B. Webb III, and P. Peczak, J. Chem. Phys. 109:798 (1998).

    Google Scholar 

  14. P. Padilla and S. Toxvaerd, J. Chem. Phys. 94:5650 (1991).

    Google Scholar 

  15. W. Paul, D. Y. Yoon, and G. D. Smith, J. Chem. Phys. 103:1702 (1995).

    Google Scholar 

  16. S. W. Smith, C. K. Hall, and B. D. Freeman, J. Chem. Phys. 102:1057 (1995).

    Google Scholar 

  17. R. Dickman and C. K. Hall, J. Chem. Phys. 89:3168 (1988).

    Google Scholar 

  18. W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, Ind. Eng. Chem. Res. 29:1709 (1990).

    Google Scholar 

  19. Y.-X. Yu, J.-F. Lu, J.-S. Tong, and Y.-G. Li, Fluid Phase Equil. 102:159 (1994).

    Google Scholar 

  20. Y.-H. Fu and S. I. Sandler, Ind. Eng. Chem. Res. 34:1897 (1995).

    Google Scholar 

  21. S. A. Rice and P. Gray, The Statistical Mechanics of Simple Liquids (Interscience, New York, 1965), pp. 423-431.

    Google Scholar 

  22. D. Ben-Amotz and D. R. Herschbach, J. Phys. Chem. 94:1038 (1990).

    Google Scholar 

  23. Y.-X. Yu and G.-H. Gao, Fluid Phase Equil. 166:111 (1999).

    Google Scholar 

  24. A. Greiner-Schmid, S. Wappmann, M. Has, and H.-D. Ludemann, J. Chem. Phys. 94:5643 (1991).

    Google Scholar 

  25. K. R. Harris and N. J. Trappeniers, Physica 104A:262 (1980).

    Google Scholar 

  26. K. R. Harris, J. Chem. Soc., Faraday Trans. I 78:2265 (1982).

    Google Scholar 

  27. H. Ertl and F. A. L. Dullien, AIChE J. 19:1215 (1973).

    Google Scholar 

  28. K. R. Harris, J. J. Alexander, T. Goscinska, R. Malhotra, L. A. Woolf, and J. H. Dymond, Mol. Phys. 78:235 (1993).

    Google Scholar 

  29. J. H. Dymond and K. R. Harris, Mol. Phys. 75:461 (1992).

    Google Scholar 

  30. B. A. Younglove and J. F. Ely, J. Phys. Chem. Ref. Data 16:577 (1987).

    Google Scholar 

  31. A. K. Doolittle and D. B. Doolittle, AIChE J. 6:157 (1960).

    Google Scholar 

  32. P. M. Sigmund and M. A. Trebble, Can. J. Chem. Eng. 70:814 (1992).

    Google Scholar 

  33. T.-H. Chung, L. L. Lee, and K. E. Starling, Ind. Eng. Chem. Fundam. 23:8 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, YX., Gao, GH. Lennard–Jones Chain Model for Self-Diffusion of n-Alkanes. International Journal of Thermophysics 21, 57–70 (2000). https://doi.org/10.1023/A:1006652703917

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006652703917

Navigation