Skip to main content
Log in

Pore Network Simulation of Evaporation of a Binary Liquid from a Capillary Porous Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A pore-network model of evaporation of a binary liquid mixture into a ternary gas phase is developed. The model is applied to study the influence of surface tension gradients induced by composition variations of the liquid on the phase distribution within a capillary porous medium. Numerical simulations based on the proposed model show that the surface tension gradients lead to the accumulation of liquid near the open edge of the network. This surface tension gradient effect is only significant for weakly disordered porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlunder, E. U.: Selective drying of mixture-containing products, Proc. 6th Intern. Drying Symp., Versailles, Sept. 5-8, 1, KL 9-23 (1988).

  2. Ho, C. K. and Udell, K. S.: Mass transfer limited drying of porous media containing an immobile binary liquid mixture, Int. J. Heat and Mass Trans. 38(2) (1995), 339-350.

    Google Scholar 

  3. Morel, D. D., Bourbiaux, B., Latil, M. and Thiebot, B.: 1990, Diffusion effects in gas flooded light oil fractured reservoirs, SPE paper 20516, pp. 433-446.

  4. Le Romancer, J. F., Defives, D. F. and Fernandes, G.: Mechanism of oil recovery by gas diffusion in fractured reservoir in presence of water, SPE/DOE 27746 (1994), pp. 99-111.

  5. Martinez, J. and Setterwall, F.: Gas phase controlled convective drying of solids wetted with multi-component liquid mixtures, Chem. Engng Sci. 46(9) (1991), 2235-2252.

    Google Scholar 

  6. Prat, M.: Discrete models of liquid-vapor phase change phenomena in porous media, Revue générale de Thermique 37 (1998), 954-961.

    Google Scholar 

  7. Tsimpanogiannis, I. N., Yortsos, Y. C., Poulou, S., Kanellopoulos, N. and Stubos, A. K.: Scaling theory of drying in porous media, Phys. Rev. E 59(4) (1999), 4353-4365.

    Google Scholar 

  8. Prat, M.: Isothermal drying of non-hygroscopic capillary-porous materials as an invasion percolation process, Int. J. Multiphase Flow 21(5) (1995), 875-892.

    Google Scholar 

  9. Laurindo, J.B. and Prat M.: Numerical and experimental network study of evaporation in capillary porous media. Phase distributions, Chem. Engng Sci. 51(23) (1996), 5171-5185.

    Google Scholar 

  10. Feder, J.: Fractals, Plenum Press, 1988.

  11. Wilkinson, D. and Willemsen, J. F.: Invasion percolation: a new form of percolation theory, J. Phys. A: Math. Gen. 16 (1983), 3365-3376.

    Google Scholar 

  12. Stephen, K. and Hildwein, H.: Recommended data of selected compounds and binary mixtures, Chemistry Data Series, Vol. IV, Parts 1+2, DECHEMA, 1987.

  13. Gmehling, J. and Onken, U.: Vapor-liquid equilibrium data collections, Chemistry Data Series I/1a,I/2a, DECHEMA, 1982.

  14. Walas, S.: Phase Equilibria in Chemical Engineering, Butterworth-Heinemann, 1985.

  15. Tamura, M., Kurata, M. and Odani, H.: Practical method for estimating surface tensions of solutions, Bull. Chem. Soc. Japan, 28(1) (1955), 83-89.

    Google Scholar 

  16. Cussler, E.L.: Diffusion, Cambridge University Press, 1997.

  17. Whitaker, S.: Role of the species momentum equation in the analysis of the Stefan diffusion tube, Ind. Engng Chem. Fund. 30 (1991), 978-983.

    Google Scholar 

  18. Pratt, K. C. and Wakeham, W. A.: Mutual diffusion coefficients for binary mixtures of water and the isomers of propanol, Proc. Roy. Soc. London, A 342 (1975), 401-409.

    Google Scholar 

  19. Laurindo, J. B. and Prat, M.: Numerical and experimental network study of evaporation in capillary porous media. Drying rates, Chem. Engng Sci. 53(12) (1998), 2257-2269.

    Google Scholar 

  20. Patankar, S. V.: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Washington DC, 1980.

    Google Scholar 

  21. Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock, VCH, 1995.

  22. Masmoudi, W. and Prat, M.: Heat and mass transfer between a porous medium and a parallel external flow. Application to drying of capillary porous materials, Int. J. Heat Mass Trans. 34(8) (1991), 1975-1989.

    Google Scholar 

  23. Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P.: Numerical Recipes in Fortran, Cambridge University Press, 1992.

  24. Prat, M.: Percolation model of drying under isothermal conditions in porous media, Int. J. Multiphase Flow 19(4) (1993), 691-704.

    Google Scholar 

  25. Hoshen, J. and Kopelman, R.: Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm, Phys. Rev. B 14 (1976), 3428.

    Google Scholar 

  26. Wilkinson, D.: Percolation model of immiscible displacement in the presence of buoyancy forces, Phys. Rev. A 30(1) (1984), 520-531.

    Google Scholar 

  27. Xu, B., Yortsos, Y. C. and Salin, D.: Invasion percolation with viscous forces, Phys. Rev. E 57(1) (1998), 739-751.

    Google Scholar 

  28. Prat, M. and Bouleux, F.: Drying of capillary porous media with stabilized front in two-dimensions, Phys. Rev. E 60(5) (1999), 5647-5656.

    Google Scholar 

  29. Shaw, T. M.: Drying as an immiscible displacement process with fluid counterflow, Phys. Rev. Lett. 59(15) (1987), 1671-1674.

    Google Scholar 

  30. Le Bray, Y. and Prat, M.: Three-dimensional pore network simulation of drying in capillary porous media, Int. J. Heat Mass Trans. 42 (1999), 4207-4224.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Prat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freitas, D.S., Prat, M. Pore Network Simulation of Evaporation of a Binary Liquid from a Capillary Porous Medium. Transport in Porous Media 40, 1–25 (2000). https://doi.org/10.1023/A:1006651524722

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006651524722

Navigation