Skip to main content
Log in

Diffusion Modes of an Equimolar Methane–Ethane Mixture from Dynamic Light Scattering

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The hydrodynamic diffusion modes of an equimolar methane–ethane mixture have been investigated by dynamic light scattering. Measurements were performed over a wide temperature range between the plait critical point at 263.55 K and 310 K along the critical isochore. Two relaxation modes have been observed which are commonly associated with pure mass diffusion and pure thermal diffusion, but in near-critical binary fluid mixtures—according to recent theory—may alternatively be interpreted as two effective diffusivities resulting from a coupling between mass and thermal diffusion. Diffusivity values for the slow mode were obtained with typical standard deviations of 1% over the whole temperature range, whereas the low amplitude of the fast mode only allowed values of this component with a large measurement uncertainty. The results are discussed in connection with literature data available for the thermophysical properties of this binary fluid mixture and regarding the various possibilities of theoretical interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. N. Shaumeyer, R. W. Gammon, and J. V. Sengers, in Measurement of the Transport Properties of Fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (Blackwell Scientific, Oxford, 1991), pp. 197-213.

    Google Scholar 

  2. S. Will and A. Leipertz, in Diffusion in Condensed Matter, J. Kärger, P. Heitjans, and R. Haberlandt, eds. (Vieweg, Wiesbaden, 1999), pp. 219-244.

    Google Scholar 

  3. A. Leipertz, Fluid Phase Equil. 125:219 (1996).

    Google Scholar 

  4. K. Kraft, S. Will, and A. Leipertz, Measurement 14:135 (1994).

    Google Scholar 

  5. M. Corti and V. Degiorgio, J. Phys. C Solid State Phys. 8:953 (1975.)

    Google Scholar 

  6. M. Hendrix, A. Leipertz, M. Fiebig, and G. Simonsohn, Int. J. Heat Mass Transfer 30:333 (1987).

    Google Scholar 

  7. S. Will, A. P. Fröba, and A. Leipertz, Int. J. Thermophys. 19:403 (1998).

    Google Scholar 

  8. C. J. Coumou and E. L. Mackor, Trans. Faraday Soc. 60:1726 (1964).

    Google Scholar 

  9. R. D. Mountain and J. M. Deutch, J. Chem. Phys. 50:1103 (1969).

    Google Scholar 

  10. P. Berge, P. Calmettes, M. Dubois, and C. Laj, Phys. Rev. Lett. 24:89 (1970).

    Google Scholar 

  11. E. Gulari, R. J. Brown, and C. J. Pings, AIChE J. 19:1196 (1973).

    Google Scholar 

  12. G. Wu, M. Fiebig, and A. Leipertz, Int. J. Heat Mass Transfer 31:2555 (1988).

    Google Scholar 

  13. H.-W. Fiedel, G. Schweiger, and K. Lucas, J. Chem. Eng. Data 36:169 (1991).

    Google Scholar 

  14. G. Simonsohn, Opt. Acta 30:875 (1983).

    Google Scholar 

  15. A. Leipertz, K. Kraft, and G. Simonsohn, Fluid Phase Equil. 79:201 (1992).

    Google Scholar 

  16. K. Kraft and A. Leipertz, Int. J. Thermophys. 16:445 (1995).

    Google Scholar 

  17. M. A. Anisimov, Critical Phenomena in Liquids and Liquid Crystals (Gordon and Breach, Philadelphia, 1991).

    Google Scholar 

  18. R. W. Gammon, H. L. Swinney, and H. Z. Cummins, Phys. Rev. Lett. 19:1467 (1967).

    Google Scholar 

  19. G. Simonsohn and F. Wagner, J. Phys. D Appl. Phys. 24:415 (1991).

    Google Scholar 

  20. T. Kun Lim, L. Swinney, K. H. Langley, and A. Kachnowski, Phys. Rev. Lett. 27:1776 (1971).

    Google Scholar 

  21. B. J. Ackerson and G. C. Straty, J. Chem. Phys. 69:1207(1978).

    Google Scholar 

  22. P. Jany and J. Straub, Int. J. Thermophys. 8:156 (1987).

    Google Scholar 

  23. D. L. Henry, L. E. Evans, and R. Kobayashi, J. Chem. Phys. 66:1802 (1977).

    Google Scholar 

  24. Y. Miura, H. Meyer, and A. Ikushimak, J. Low Temp. Phys. 55:247 (1984).

    Google Scholar 

  25. B. J. Ackerson and H. J. M. Hanley, J. Chem. Phys. 73:3568 (1980).

    Google Scholar 

  26. P. Calmettes and C. Laj, Phys. Rev. Lett. 36:1372 (1976).

    Google Scholar 

  27. H. L. Swinney and D. L. Henry, Phys. Rev. A 8:2586 (1973).

    Google Scholar 

  28. G. Wu, M. Fiebig, and A. Leipertz, Wärme-Stoffübertr. 22:365 (1988).

    Google Scholar 

  29. S. Will and A. Leipertz, Int. J. Thermophys. 20:791 (1999).

    Google Scholar 

  30. M. A. Anisimov, E. E. Gorodetskii, V. D. Kulikov, A. A. Povodyrev, and J. V. Sengers, Physica A 220:277 (1995); Physica A 223:272 (1996).

    Google Scholar 

  31. M. A. Anisimov, E. E. Gorodetskii, V. D. Kulikov, and J. V. Sengers, Phys. Rev. E 51:1199 (1995).

    Google Scholar 

  32. L. Mistura, Nuovo Cimento B 12:35 (1972).

    Google Scholar 

  33. M. L. S. Matos Lopes, C. A. Nieto de Castro, and J. V. Sengers, Int. J. Thermophys. 13:283 (1992).

    Google Scholar 

  34. M. A. Anisimov, V. A. Agayan, A. A. Povodyrev, J. V. Sengers, and E. E. Gorodetskii, Phys. Rev. E 57:1946 (1998).

    Google Scholar 

  35. B. Chu, Laser Light Scattering, 2nd ed. (Academic Press, New York, 1991).

    Google Scholar 

  36. B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley-Interscience, New York, 1976).

    Google Scholar 

  37. A. A. Povodyrev, G. X. Jin, S. B. Kiselev, and J. V. Sengers, Int. J. Thermophys. 17:909 (1996).

    Google Scholar 

  38. K. Kraft, M. Matos Lopes, and A. Leipertz, Int. J. Thermophys. 16:423 (1995).

    Google Scholar 

  39. E. P. Sakonidou, H. R. van den Berg, and C. A. ten Seldam, J. Chem. Phys. 109:717 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröba, A.P., Will, S. & Leipertz, A. Diffusion Modes of an Equimolar Methane–Ethane Mixture from Dynamic Light Scattering. International Journal of Thermophysics 21, 603–620 (2000). https://doi.org/10.1023/A:1006629516889

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006629516889

Navigation