Skip to main content
Log in

Expression of the pea (Pisum sativum L.) α-tubulin gene TubA1 is correlated with cell division activity

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Microtubules are thought to be major determinants of plant morphogenesis, through effects on planes of cell division and on directions of differential cell expansion. In differentiation and redifferentiation processes, tubulin expression may prove a useful early indicator of cell activity. We examined the expression and localization of the pea α-tubulin gene TubA1 in situ and in transgenic alfalfa (Medicago sativa) to explore its use as a probe for plant development, and as a test case for correct developmental expression between two legume species commonly compared for studies of symbiosis with Rhizobium. The TubA1 mRNA was more abundant in root tips and immature leaves than in other tissues of pea. The promoter of TubA1 was fused to β-glucuronidase (GUS) to analyze α-tubulin expression in transgenic alfalfa. Transient assays indicated that the TubA1 gene is transcribed at moderate levels compared to the cauliflower mosaic virus (CaMV) 35S promoter. Histochemical staining for GUS activity confirmed a correlation between TubA1 expression and cell division in nodules, roots and leaves. TubA1 promoter activity was first detected in the inner cortex of the root between 18 h and 24 h after spot inoculation with Rhizobium meliloti. Expression of a c-myc epitope fused to the carboxy-terminus of TubA1 resulted in an incorporation into the microtubular cytoskeleton, demonstrating the effectiveness of at least one epitope tag in creating functional tubulin fusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brierley, H.L., Webster, P. and Long, S.R. 1995. The Pisum sativum TubA1 gene, a member of a small family of _-tubulin sequences. Plant Mol. Biol. 27: 7115-727.

    Google Scholar 

  • Carpenter, J.K., Ploense, S.E., Snustad, D.P. and Silflow, C.D. 1992. Preferential expression of an _-tubulin gene of Arabidopsis in pollen. Plant Cell 4: 557-571.

    Article  PubMed  Google Scholar 

  • Carpenter, J.L., Kopczak, S.D., Snustad, D.P. and Silflow, C.D. 1993. Semi-constitutive expression of an Arabidopsis thaliana _-tubulin gene. Plant Mol. Biol. 21: 937-942.

    PubMed  Google Scholar 

  • Carrino, J.J. and Lafftner, T.G. 1986. Transcription of alpha-tubulin and histone H4 begins at the same point in Physarum cell cycle. J. Cell Biol. 102: 1666-1670.

    PubMed  Google Scholar 

  • Cleveland, D.W. 1987. The multi-tubulin hypothesis revisited: what have we learned? J. Cell Biol. 104: 381-383.

    PubMed  Google Scholar 

  • Downie, J.A., Knight, C.D., Johnston, A.W.B. and Rossen, L. 1985. Identification of genes and gene products involved in the nodulation of peas by Rhizobium leguminosarum. Mol. Gen. Genet. 198: 255-262.

    Google Scholar 

  • Doyle, J.J.and Beachy, R.N. 1985. Ribosomal gene variation in soybean (Glycine) and its relatives. Theor. Appi. Genet. 70: 369-376.

    Google Scholar 

  • Dudley, M.E., Jacobs, T.W. and Long, S.R. 1987. Microscopic studies of cell divisions in alfalfa roots by Rhizobium meliloti. Planta 171: 289-301.

    Google Scholar 

  • Ehrhardt, D.W., Atkinson, E.M. and Long, S.R. 1992. Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science 256: 998-1000.

    PubMed  Google Scholar 

  • Emons, A.M. and Wolters-Arts, A.M.C. 1983. Cortical micro-tubule and microfibril deposition in the cell wall of root hairs of Equisetum hyemale. Protorplasma 117: 68-81.

    Google Scholar 

  • Evan, G.I., Lewis, G.K., Ramsey, G. and Bishop, J.M. 1985. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. J. Cell. Biol. 5: 3610-3616.

    Google Scholar 

  • Finan, T.M., Kunkel, B., De Vos, G.F. and Signer, E.R. 1986. Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J. Bact. 167: 66-72.

    PubMed  Google Scholar 

  • Fisher, R.F., Egelhoff, T.T., Mulligan, J.T. and Long, S.R. 1988. Specific binding of proteins from Rhizobium meliloti cell-free extracts containing NodD to DNA sequences upstream of inducible nodulation genes. Genes Dev. 2: 282-293.

    PubMed  Google Scholar 

  • Fosket, D.E. and Morejohn, L.C. 1992. Structural and functional organisation of tubulin. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 210-240.

    Google Scholar 

  • Gage, D.J., Bobo, T. and Long, S.R. 1996. Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa, Medicago sativa. J. Bact. 178: 7159-7166.

    PubMed  Google Scholar 

  • Gelvin, S.B. and Liu, C.-N. 1994. Genetic manipulation of Agrobacterium tumefaciens strains to improve transformation of recalcitrant plant species. In: S.B. Gelvin and R.A. Schilperoort (Eds.), Plant Molecular Biology Manual, Kluwer Academic Publishers, Dordrecht, Netheriands, pp. B4/1-B4/13.

    Google Scholar 

  • Gilmour, D.M., Golds, T.L. and Davey, M.R. 1989. Medicago protoplasts: fusion, culture and plant regeneration. In: Y.P.S. Bajai (Ed.), Biotechnology in Agriculture and Forestry, Vol. 8, Springer-Verlag, Berlin, pp. 370-388.

    Google Scholar 

  • Goddard, R.H., Wick, S.M., Silflow, C.D. and Snustadt, D.P. 1994. Microtubule components of the plant cytoskeleton. Plant Physiol. 104: 1-6.

    PubMed  Google Scholar 

  • Green, P.B. 1994. Connecting gene and hormone action to form and pattern organogenesis: biophysical transductions. J. Exp. Bot. 45 (special issue): 1775-1788.

    Google Scholar 

  • Hauser, M.-T., Morikami, A. and Benfey, P.N. 1995. Conditional root expansion mutants of Arabidopsis. Development 121: 1237-1252.

    PubMed  Google Scholar 

  • Hirsch, A.M. 1992. Tansley review no.40: Developmental biology of legume nodulation. New Phytol. 122: 211-237.

    Google Scholar 

  • Hoyle, H.D. and Raff, E.C. 1990. Two Drosophila _ tubulin isoforms are not functionally equivalent. J. Cell Biol. 111: 1009-1026.

    PubMed  Google Scholar 

  • Jefferson, R.A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387-405.

    Google Scholar 

  • Kilmartin, J.V., Wright, B. and Milstein, C. 1982. Rat monoclonal antitubulin antibodies derived by using a new non-secreting rat cell line. J. Cell Biol. 93: 576-582.

    PubMed  Google Scholar 

  • Koncz, C. and Schell, J. 1986. The promoter of T L-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204: 383-396.

    Article  Google Scholar 

  • Krause, M., Harrison, S.W., Xu, S.-Q., Chen, L. and Fire, A. 1994. Elements regulating cell-and stage-specific expression of the C. elegans MyoD family homolog hih-1. Dev. Biol. 166: 133-148.

    PubMed  Google Scholar 

  • Lamb, J.W., Hombrecher, G. and Johnston, A.W.B. 1982. Plasmid-determined nodulation and nitrogen-fixation abilities in Rhizobium phaseoli. Mol. Gen. Genet. 86: 449-452.

    Google Scholar 

  • Lloyd, A.M., Walbot, V. and Davis, R.W. 1992. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and Ci. Science 258: 1773-1775.

    PubMed  Google Scholar 

  • Luehrsen, K.R., De Wet, J.R. and Walbot, V. 1992. Transient expression analysis in plants using the firefly luciferase reporter gene. Meth. Enzymol. 216: 397-414.

    PubMed  Google Scholar 

  • Marshall, L.G., Jeng, R.L., Mulholland, J. and Stearns, T. 1996. Analysis of Tub4p, a yeast-tubulin-like protein: implications for microtubule-organizing center function. J. Cell Biol. 134: 443-454.

    PubMed  Google Scholar 

  • Matthews, K.A., Rees, D. and Kaufman, T.C. 1993. A functionally specialized _-tubulin is required for oocyte meiosis and cleavage mitoses in Drosophila. Development 117: 977-991.

    PubMed  Google Scholar 

  • Meade, H.M., Long, S.R., Ruvkun, G.B., Brown, S.E. and Ausubel, F.M. 1982. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J. Bact. 149: 114-122.

    PubMed  Google Scholar 

  • Meselson, M. and Yuan, R. 1968. DNA restriction enzyme from E. coli. Nature 217: 1110-1114.

    PubMed  Google Scholar 

  • Montoliu, L., Puigdomènech, P. and Rigau, J. 1990a. The Tub _3 gene from Zea mays: structure and expression in dividing plant tissues. Gene 94: 201-208.

    Article  PubMed  Google Scholar 

  • Montoliu, L., Rigau, J. and Puigdomènech, P. 1990b. A tandem of _-tubulin genes preferentially expressed in radicular tissues from Zea mays. Plant Mol. Biol. 14: 1-16.

    PubMed  Google Scholar 

  • Narvaez-Vasquez, J., Orozco-Cardenas, M.L. and Ryan, C.A. 1992. Differential expression of a chimeric CaMV-tomato proteinase inhibitor I gene in leaves of transformed nightshade, tobacco and alfalfa. Plant Mol. Biol. 20: 1149-1157.

    PubMed  Google Scholar 

  • Raff, E.C. 1984. Genetics of microtubule systems. J. Cell Biol. 99: 1-10.

    PubMed  Google Scholar 

  • Schardl, C.L., Byrd, A.D., Benzion, G., Altschuler, M.A., Hilde-brand, D.F. and Hunt, A.G. 1987. Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61: 1-11.

    PubMed  Google Scholar 

  • Schenk, R.U. and Hildebrandt, A.C. 1972. Medium and techniques for induction and growth of monocotyledonous and dicotyledondous plant cell cultures. Can. J. Bot. 50: 199-204.

    Google Scholar 

  • Seitz Kris, M.H. and Bingham, E. 1988. Interactions of highly regenerative genotypes of alfalfa (Medicago sativa) and tissue culture protocols. In Vitro Cell. Dev. Biol. 24: 1047-1052.

    Google Scholar 

  • Stearns, T. 1990. The yeast microtubule cytoskeleton: genetic approaches to structure and function. Cell Motil. Cytoskel. 15:1-6.

    Google Scholar 

  • Stotz, H.U., Powell, A. L.T., Damon, S.E., Greve, L.C., Bennett, A.B. and Labavitch, J.M. 1993. Molecular characterization of a polygalacturonase inhibitor from Pyrus communis L. cv. Bartlett. Plant Physiol. 102: 133-138.

    PubMed  Google Scholar 

  • Traas, J., Bellini, C., Nacry, P., Kronenberger, J., Bouchez, D. and Carboche, M. 1995. Normal differentiation patterns in plants lacking microtubular preprophase bands. Nature 375: 676-677.

    Google Scholar 

  • van Brussel, A.A.N., Bakhuizen, R., van Spronsen, P.C., Spaink, H.P., Tak, T., Lugtenberg, B.J.J. and Kijne, J.W. 1992. Induction of pre-infection thread structures in leguminous host plant by mitogenic lipo-oligosaccharides of Rhizobium. Science 257: 70-72.

    Google Scholar 

  • Van Larebecke, N., Engler, G., Holsters, M., Van den Elsacker, S., Zaenen, J., Schilperoort, R.A. and Schell, J. 1974. Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252: 169-170.

    PubMed  Google Scholar 

  • Villemur, R., Joyce, C.M., Haas, N.A., Goddard, R.H., Kopczak, S.D., Hussey, P.J. and Snustad, D.P. 1992. _-Tubulin gene family of maize (Zea mays L.): evidence for two ancient _-tubulin genes in plants. J. Mol Biol. 227: 81-96.

    PubMed  Google Scholar 

  • Wehland, J., Schröder, H.C. and Weber, K. 1984. Amino acid sequence requirements in the epitope recoginzed by the _-tubulin-specific rat monoclonal antibody YL1/2. EMBO J. 3: 1295-1300.

    PubMed  Google Scholar 

  • Yang, W.-C., de Blank, C., Meskiene, I., Hirt, H., Bakker, J., van Kammen, A., Franssen, H. and Bisseling, T. 1994. Rhizobium Nod factors reactivate the cell cycle during infection and nodule primordium formation, but the cycle is only completed in primordium formation. Plant Cell 6: 1415-1462.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stotz, H.U., Long, S.R. Expression of the pea (Pisum sativum L.) α-tubulin gene TubA1 is correlated with cell division activity. Plant Mol Biol 41, 601–614 (1999). https://doi.org/10.1023/A:1006338401808

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006338401808

Navigation