Skip to main content
Log in

Variability of Near-Ground Ozone Concentrations During Cold Front Passages – a Possible Effect of Tropopause Folding Events

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The analysis of surface ozone variability requires besides chemicalstudies the consideration of meteorological conditions and dynamicprocesses. Our research focuses on the mechanisms in connection with coldfront passages. A statistical study and case studies of cold front passageswere carried out at six German ground-based sites during the year 1990.After the passage of cold fronts three typical developments of thenear-ground ozone concentrations could be identified. Usually the ozoneconcentrations decrease due to advection of clean air masses or due toenhanced cloudiness preventing the photochemical production of ozone,chemical destruction by nitrogenoxides, and heterogeneous chemistry. In somecases the concentrations increased by reason of downward mixing of ozoneenriched air intruded from the stratosphere into the troposphere bytropopause foldings. For a few cases no modification set in. The decreasewas mostly twice as strong as the increase. The latter was between 4 and 8ppb on the average. Special emphasis is given to the transport ofstratospheric ozone down to the ground. There is no direct evidence forstratospheric ozone at ground level, because it can‘t be distinguished fromthe tropospheric one, but from case studies circumstantial evidence is foundin favour of it. As an example of increasing ozone behind the passage ofcold fronts one case study typical of all other case studies is presented.It shows the characteristic properties of the corresponding fronts, whichare fast movement, a vertical split structure and strong convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attmannspacher, W. and Hartmannsgruber, R., 1973: On extremely high values of ozone near ground, Pure App. Geophys. (Pageoph) 106–108, 1091–1096.

    Google Scholar 

  • Berliner Wetterkarte, 1990.

  • Bleck, R., 1967: Numerical methods for computing moist isentropic trajectories, Research in four-dimensional diagnosis of cyclonic storm cloud systems, Final Scientific Report, Air Force Cambridge Res. Lab., 1–34.

  • Browning, K. A. and Monk, G. A., 1982: A simple model for the synoptic analysis for cold fronts, Quart. J. R. Meteorol. Soc. 108, 435–452.

    Google Scholar 

  • Buzzi, A., Giovanelli, G., Nanni, T., and Tagliazucca, M., 1984: Study of high ozone concentrations in the troposphere associated with lee cyclogenesis during ALPEX, Beitr. Phys. Atmos. 57, 380–393.

    Google Scholar 

  • Buzzi, A., Giovanelli, G., Nanni, T., Tagliazucca, M., 1985: Case study of stratospheric ozone descent to the lower troposphere during Alpex, Beitr. Phys. Atmos. 58, 399–406.

    Google Scholar 

  • Chung, Y.-S., 1977: Ground-level ozone and regional transport of air pollutants, J. Appl. Meteorol. 16, 1127–1136.

    Google Scholar 

  • Chung, Y. S. and Dann, T., 1985: Observations of stratospheric ozone at the ground level in Regina, Canada, Atmos. Environ. 19, 157–162.

    Google Scholar 

  • Colbeck, I. and Harrison, R. M., 1985: The frequency and causes of elevated concentrations of ozone at ground level at rural sites in north-west England, Atmos. Environ. 19, 1577–1587.

    Google Scholar 

  • Danielsen, E. F., 1961: Trajectories: isobaric, isentropic and actual, J. Meteorol. 18, 479–486.

    Google Scholar 

  • Danielsen, E. F., 1968: Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity, J. Atmos. Sci 25, 502–518.

    Google Scholar 

  • Danielsen, E. F., Bleck, R., Shedlovsky, J., and Wartburg, A., 1970: Observed distribution of radioactivity, ozone, and potential vorticity associated with tropopause folding, J. Geophys. Res. 75, 2353–2361.

    Google Scholar 

  • Danielsen, E. F., Hipskind, R. S., Gaines, S. E., Sachse, G. W., Gregory, G. L., and Hill, G. F., 1987: Three-dimensional analysis of potential vorticity associated with tropopause folds and observed variations of ozone and carbon monoxide, J. Geophys. Res. 92, 2103–2111.

    Google Scholar 

  • Davis, D. R. and Jensen, R. E., 1976: Low level ozone and weather systems, in Proc. APCA Specialty Conference on Ozone/Oxidants Interactions with Total Environment, Dallas, Texas, March 1976, pp. 242–251.

  • Davies, T. D. and Schuepbach, E., 1994: Episodes of high ozone concentrations at the earth’s surface resulting from transport down from the upper troposphere/lower stratosphere: A review and case studies, Atmos. Environ. 28, 53–68.

    Google Scholar 

  • Derwent, R. G., Eggleton, A. E., Williams, M. L., and Bell, C. A., 1978: Elevated ozone levels from natural sources, Atmos. Environ. 12, 2173–2177.

    Google Scholar 

  • Dutkiewicz, V. A. and Husain, L., 1979: Determination of stratospheric ozone at ground level using 7Be/ozone ratios, Geophys. Res. Lett. 6, 171–174.

    Google Scholar 

  • Europäischer Wetterbericht, 1990.

  • Fraedrich, K., Bach, R., and Naujokat, G., 1986: Single station climatology of central European fronts: Number, time and precipitation statistics, Beitr. Phys. Atmos. 59, 54–65.

    Google Scholar 

  • Grewe, V., and Dameris, M., 1996: Calculating the global mass exchange between stratosphere and troposphere, Annals. Geophys. 14(3), 431–442.

    Google Scholar 

  • Hoerling, M. P., Schaack, T. K., and Lenzen, A. J., 1991: Global objective tropopause analysis, Mon. Wea. Rev. 119, 1816–1831.

    Google Scholar 

  • Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglas, A. R., Rood, R. B., and Pfister, L., 1995: Stratosphere-troposphere exchange, Rev. Geophys. 33, 403–439.

    Google Scholar 

  • Husain, L., Coffey, P. E., Meyers, R. E., and Cederwall, R. T., 1977: Ozone transport fromstratosphere to troposphere, Geophys. Res. Lett. 4, 363–365.

    Google Scholar 

  • Johnson, W. B. and Viezee, 1981: Stratospheric ozone in the lower troposphere–I. Presentation and interpretation of aircraft measurements, Atmos. Environ. 15, 1309–1323.

    Google Scholar 

  • Kley, D., 1991: The TOR subproject: Tropospheric Ozone Research, Proc. EUROTRAC Symp. ’90, P. Borrell et al.(eds), SPB Academic Publishing, The Hague, The Netherlands, pp. 489–491.

    Google Scholar 

  • Kley, D., Geiss, H., and Mohnen, V., 1994: Tropospheric ozone at elevated sites and precursor emissions in the United States and Europe, Atmos. Environ. 28, 489–491.

    Google Scholar 

  • Kurz, M., 1990: Synoptische Meteorologie. Leitfäden fuer die Ausbildung im Deutschen Wetterdienst, Selbstverlag des Deutschen Wetterdienstes.

  • Lamb, R. G., 1977: A case study of stratospheric ozone affecting ground-level oxidant concentrations, J. Appl. Meteorol. 16, 780–794.

    Google Scholar 

  • Lisac, I., Marki, A., Tiljak, D., Klasinc, L., and Cvitas, T., 1993: Stratospheric ozone intrusion over Zagreb, Croatia, on February 6, 1990, Meteorol. Zeit. N.F. 2, 224–231.

    Google Scholar 

  • Merill, J. T., Bleck, R., and Boudra, D., 1986: Techniques of Lagrangian trajectory analysis in isentropic coordinates, Mon. Wea. Rev. 114, 571–581.

    Google Scholar 

  • Reed, R. J., 1955: A study of a characteristic type of upper-level frontogenesis, J. Meteorol. 12, 226–237.

    Google Scholar 

  • Reiter, R., 1988: Behaviour of mean annual ozone concentrations in the lower troposphere, Naturwissenschaften 75, 511–512.

    Google Scholar 

  • Reiter, R., 1990: The ozone trend in the layer of 2 to 3 km a.s.l. since 1978 and the typical time variations of ozone profile between ground and 3 km a.s.l., Meteorol. Atmos. Phys. 42, 91–104.

    Google Scholar 

  • Shapiro, M. A., 1974: A multiple structure frontal zone jet stream system as revealed by meteorologically instrumentated aircraft, Mon. Wea. Rev. 102, 244–253.

    Google Scholar 

  • Shapiro, M. A., 1978: Further evidence of the mesoscale and turbulent structure of upper level jet stream-frontal zone systems, Mon. Wea. Rev. 106, 1100–1111. Shapiro, M. A., 1980: Turbulent mixing within tropopause folds as amechanism for the exchange of chemical constituents between stratosphere and troposphere, J. Atmos. Sci. 37, 994–1004.

    Google Scholar 

  • Spaete, P., Johnson, D. R., and Schaack, T. K., 1994: Stratospheric-tropospheric mass exchange during the Presidents’ day storm, Mon. Wea. Rev. 122, 424–439.

    Google Scholar 

  • Tuck, A. F., Browell, E. V., Danielsen, E. F., Holton, J. R., Hoskins, B. J., Johnson, D. R., Kley, D., Krueger, A. J., Megie, G., Newell, R. E., Vaughan, G., 1985: Stratosphere-troposphere exchange, Atmospheric ozone, WMO, Report No. 16, Geneva, Vol. I, Chapter 5, 151–240.

    Google Scholar 

  • Vaughan, G., Price, J. D., and Howells, A., 1994: Transport into the troposphere in a tropopause fold, Quart. J. R. Meteorol. Soc. 120, 1085–1103.

    Google Scholar 

  • Viezee, W., Johnson, W. B., and Singh, H. B., 1983: Stratospheric ozone in the lower troposphere–II. Assessment of downward flux and ground-level impact, Atmos. Environ. 17, 1979–1993.

    Google Scholar 

  • Volz, A., Geiss, H., McKeen, S., Kley, D., 1988: Correlation of ozone and solar radiation at Montsouris and Hohenpeissenberg: Indications for photochemical influence, Proc. Quadr. Ozone Symp., Goettingen, Aug. 1988.

  • Wollf, G. T., Ferman, M. A., and Monson, P. R., 1979: The distribution of beryllium-7 within high-pressure systems in the eastern United States, Geophys. Res. Lett. 6, 637–639.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunz, H., Speth, P. Variability of Near-Ground Ozone Concentrations During Cold Front Passages – a Possible Effect of Tropopause Folding Events. Journal of Atmospheric Chemistry 28, 77–95 (1997). https://doi.org/10.1023/A:1005867229466

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005867229466

Navigation