Skip to main content
Log in

Riemannian Submersions and Riemannian Manifolds with Einstein--Weyl Structures

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

The main results of this paper are as follows. (a) Let π : MN be a non-trivial Riemannian submersion with totally geodesic fibers of dimension 1 over an Einstein manifold N. If M is compact and admits a standard Einstein--Weyl structure with constant Einstein--Weyl function, then N admits a Kähler structure andM a Sasakian structure. (b) Let \( \pi:{M^{2n + 1} \to N^{2n}} \) be a Riemannian submersion with totally geodesic fibers and N an Einstein manifold of positive scalar curvature \( \geqslant 4n(n + 1)\). If M admits a standard Sasakian structure, then M admits an Einstein--Weyl structure with constant Einstein--Weyl function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besse, A. L.: Einstein Manifolds, Ergeb. Math. Grenzgeb. (3), 10, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  2. Blair, D. E.: Contact Manifolds in Riemannian Geometry, Lecture Notes in Math, 509, Springer-Verlag, Berlin, 1976.

    Google Scholar 

  3. Escobales, R. H. Jr: Sufficient conditions for a bundle-like foliation to admit a Riemannian submersion onto its leaf space, Proc. Amer. Math. Soc. 84 (1982), 280–284.

    Google Scholar 

  4. Hatakeyama, Y.: Some notes on differentiable manifolds with almost contact structures, Tâhoku Math. J. 15 (1963), 176–181.

    Google Scholar 

  5. Hermann, R.: On the differential geometry of foliations, Ann. Math. 72 (1960), 445–457.

    Google Scholar 

  6. Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry, Vols 1 and 2, Interscience Publishers, London, 1963 and 1969.

    Google Scholar 

  7. Narita, F.: Riemannian submersions and isometric reflections with respect to submanifolds, Math. J. Toyama Univ. 15 (1992), 83–94.

    Google Scholar 

  8. Narita, F.: Riemannian submersion with isometric reflections with respect to the fibers, Kodai Math. J. 16 (1993), 416–427.

    Google Scholar 

  9. O'Neill, B.: The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469.

    Google Scholar 

  10. Pak, H. K.: On one-dimensional metric foliations in Einstein spaces, Illinois J. Math. 36 (1992), 594–599.

    Google Scholar 

  11. Pedersen, H. and Swann, A.: Riemannian submersions, four-manifolds and Einstein–Weyl geom-etry, Proc. London Math. Soc. 66 (1993), 381–399.

    Google Scholar 

  12. Sekigawa, K.: On some compact Einstein almost Kähler manifolds, J. Math. Soc. Japan 39 (1987), 677–684.

    Google Scholar 

  13. Vaisman, I.: Locally conformal Kähler manifolds with parallel Lee form, Rend. Mat. Roma (VI) 12 (1979), 263–284.

    Google Scholar 

  14. Vaisman, I.: Some curvature properties of locally conformal Kähler manifolds, Trans. Amer. Math. Soc. (2) 259 (1980), 439–447.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narita, F. Riemannian Submersions and Riemannian Manifolds with Einstein--Weyl Structures. Geometriae Dedicata 65, 103–116 (1997). https://doi.org/10.1023/A:1004988728034

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004988728034

Navigation