Skip to main content
Log in

Effect of Microscopic Noise on Front Propagation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the effect of the noise due to microscopic fluctuations on the position of a one dimensional front propagating from a stable to an unstable region in the “linearly marginal stability case.” By simulating a very simple system for which the effective number N of particles can be as large as N=10150, we measure the N dependence of the diffusion constant DN of the front and the shift of its velocity vN. Our results indicate that DN∼(log N)−3. They also confirm our recent claim that the shift of velocity scales like vmin−vN≃K(log N)−2 and indicate that the numerical value of K is very close to the analytical expression Kapprox obtained in our previous work using a simple cut-off approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  1. R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics 7:355–369 (1937).

    Google Scholar 

  2. A. Kolmogorov, I. Petrovsky, and N. Piscounov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou, A 1:1–25 (1937).

    Google Scholar 

  3. D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve propagation, Lecture Notes in Mathematics 446:5–49 (1975).

    Google Scholar 

  4. D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Advances in Mathematics 30:33–76 (1978).

    Google Scholar 

  5. W. van Saarloos, Three basic issues concerning interface dynamics in nonequilibrium pattern formation, Phys. Rep. 301:9–43 (1998).

    Google Scholar 

  6. P. Collet and J.-P. Eckmann, Instabilities and Fronts in Extended Systems (Princeton University Press, 1990).

  7. S. J. D. Bartolo and A. T. Dorsey, Velocity selection for propagating fronts in superconductors, Phys. Rev. Lett. 77:4442–4445 (1996).

    Google Scholar 

  8. D. Carpentier and P. L. Doussal, Topological transitions and freezing in XY models and Coulomb gases with quenched disorder: renormalization via traveling waves, Nucl. Phys. B 588[FS]:565–629 (2000).

    Google Scholar 

  9. M. D. Bramson, Convergence of solutions of the Kolmogorov equation to traveling waves, Memoirs of the American Mathematical Society 44 (1983).

  10. G. Dee and J. S. Langer, Propagating pattern selection, Phys. Rev. Lett. 50:383–386 (1983).

    Google Scholar 

  11. J. S. Langer, Lectures in the theory of pattern formation, in Chance and Matter (1986), pp. 629–711.

  12. E. Ben-Jacob, H. Brand, G. Dee, L. Kramer, and J. S. Langer, Pattern propagation in nonlinear dissipative systems, Physica D 14:348–364 (1985).

    Google Scholar 

  13. M. Bramson, P. Calderoni, A. D. Masi, P. Ferrari, J. L. Lebowitz, and R. H. Schonmann, Microscopic selection principle for a diffusion-reaction equation, J. Stat. Phys. 45:905–920 (1986).

    Google Scholar 

  14. J. Armero, J. M. Sancho, J. Casademunt, L. R. rez Piscina, and F. Sagués, External fluctuations in front propagation, Phys. Rev. Lett. 76:3045–3048 (1996).

    Google Scholar 

  15. J. Armero, J. Casademunt, L. R. rez Piscina, and J. M. Sancho, Ballistic and diffusive corrections to front propagation in the presence of multiplicative noise, Phys. Rev. E 58:5494–5500 (1998).

    Google Scholar 

  16. M.-A. Santos and J. M. Sancho, Noise induced fronts, Phys. Rev. E 59:98–102 (1999).

    Google Scholar 

  17. A. Rocco, U. Ebert, and W. van Saarloos, Subdiffusive fluctuations of “pulled” fronts with multiplicative noise, Phys. Rev. E 62:R13-R16 (2000).

    Google Scholar 

  18. A. Lemarchand, A. Lesne, and M. Marechal, Langevin approach to a chemical wave front: Selection of the propagation velocity in the presence of external noise, Phys. Rev. E 51:4457–4465 (1995).

    Google Scholar 

  19. M.-A. Karzazi, A. Lemarchand, and M. Marechal, Fluctuations effects on chemical wave fronts, Phys. Rev. E 54:4888–4895 (1996).

    Google Scholar 

  20. A. Lemarchand and B. Nowakowski, Perturbation of local equilibrium by a chemical wave front, J. Chem. Phys. 109:7028–7037 (1998).

    Google Scholar 

  21. A. Lemarchand and B. Nowakowski, Different description levels of chemical wave front and propagation speed selection, J. Chem. Phys. 111:6190–6196 (1999).

    Google Scholar 

  22. A. Lemarchand, Selection of an attractor in a continuum of stable solutions: Descriptions of a wave front at different scales?, J. Stat. Phys. 101:579–598 (2000).

    Google Scholar 

  23. H.-P. Breuer, W. Huber, and F. Petruccione, Fluctuation effects on wave propagation in a reaction-diffusion process, Physica D 73:259–273 (1994).

    Google Scholar 

  24. H.-P. Breuer, W. Huber, and F. Petruccione, The macroscopic limit in a stochastic reaction-diffusion process, Europhys. Lett. 30:69–74 (1995).

    Google Scholar 

  25. M.-V. Velikanov and R. Kapral, Fluctuation effects on quadratic autocatalysis fronts, J. Chem. Phys. 110:109–115 (1999).

    Google Scholar 

  26. J. Mai, I. M. Sokolov, and A. Blumen, Front propagation and local ordering in one-dimensional irreversible autocatalytic reactions, Phys. Rev. Lett. 77:4462–4465 (1996).

    Google Scholar 

  27. J. Mai, I. M. Sokolov, and A. Blumen, Front propagation in one-dimensional autocatalytic reactions: the breakdown of the classical picture at small particle concentrations, Phys. Rev. E 62:141–145 (2000).

    Google Scholar 

  28. A. R. Kerstein, Computational Study of propagating fronts in a lattice-gas model, J. Stat. Phys. 45:921–931 (1986).

    Google Scholar 

  29. É. Brunet and B. Derrida, Shift in the velocity of a front due to a cutoff, Phys. Rev. E 56:2597–2604 (1997).

    Google Scholar 

  30. D. A. Kessler, Z. Ner, and L. M. Sander, Front propagation: Precursors, cutoffs and structural stability, Phys. Rev. E 58:107–114 (1998).

    Google Scholar 

  31. D. A. Kessler and H. Levine, Fluctuation-induced diffusive instabilities, Nature 394:556–558 (1998).

    Google Scholar 

  32. R. van Zon, H. van Beijeren, and C. Dellago, Largest Lyapunov exponent for many particle systems at low densities, Phys. Rev. Lett. 80:2035–2038 (1998).

    Google Scholar 

  33. L. Pechenik and H. Levine, Interfacial velocity corrections due to multiplicative noise, Phys. Rev. E 59:3893–3900 (1999).

    Google Scholar 

  34. D. ben Avraham, Fisher waves in the diffusion-limited coalescence process A + AA, Phys. Lett. A 247:53–58 (1998).

    Google Scholar 

  35. J. Riordan, C. R. Doering, and D. ben Avraham, Fluctuations and stability of fisher waves, Phys. Rev. Lett. 75:565–568 (1995).

    Google Scholar 

  36. J. Cook and B. Derrida, Directed polymers in a random medium: 1/d expansion and the n-tree approximation, J. Phys. A 23:1523–1554 (1990).

    Google Scholar 

  37. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (CUP, Cambridge, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunet, É., Derrida, B. Effect of Microscopic Noise on Front Propagation. Journal of Statistical Physics 103, 269–282 (2001). https://doi.org/10.1023/A:1004875804376

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004875804376

Navigation