Skip to main content
Log in

Impact properties of glass fibre/impact modifier/polypropylene hybrid composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The impact properties of glass-fibre/impact-modifier/polypropylene (GF/IM/PP) hybrid composites were characterized using a number of impact test methods. For the IM/PP blends, the impact fracture toughness can be measured using linear elastic fracture mechanics (LEFM) approach. For the GF/IM/PP hybrids, due to their non-compliance with LEFM, the essential work of fracture approach was employed. The impact properties of the IM/PP blends increased with IM concentration, while that of the GF/IM/PP hybrids did not change very much with IM content. It was concluded that cavitation of the PP matrix around the IM particles was the major toughening mechanism in the IM/PP blends. However, in the GF/IM/PP hybrids, the toughening effect due to cavitation was suppressed due to the introduction of short glass fibres (≈15 vol%). It is believed that the local stress in the matrix was relieved by fibre/matrix debonding of the relatively weak fibre/matrix interface. Thus, the presence of the IM particles was rendered insignificant in the GF/IM/PP hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. C. Tjong, J. S. Shen and R. K. Y. Li, Polymer 37 (1996) 2309.

    Google Scholar 

  2. J. S. Shen and R. K. Y. Li Idem., Polym. Eng. Sci. 36 (1996) 100.

    Google Scholar 

  3. D. E. Spahr, K. Friedrich, J. M. Schultz and R. S. Bailey, J. Mater. Sci. 25 (1990) 4427.

    Google Scholar 

  4. S. F. Bush, F. Yilmaz and P. F. Zhang, Plast. Rubb. & Compos. Process. Appl. 24 (1995) 139.

    Google Scholar 

  5. J. Karger-Kocsis, T. Harmia and T. Czigany, Comp. Sci. Technol. 54 (1995) 287.

    Google Scholar 

  6. S. Hashemi and M. Koohgilani, Polym. Eng. Sci. 35 (1995) 1124.

    Google Scholar 

  7. L. S. Chen, Y. W. Mai and B. Cotterell, omPolym. Eng. Sci.ibid. 29 (1989) 505.

    Google Scholar 

  8. T. Vu-Khanh, J. Thermoplastic Compos. Mater. 4 (1991) 46.

    Google Scholar 

  9. P. H. Th. Vollenberg and D. Heikens, J. Mater. Sci. 25 (1990) 3089.

    Google Scholar 

  10. J. Karger-Kocsis, Polymer 20 (1979) 37.

    Google Scholar 

  11. J. Karger-Kocsis and V. N. Kuleznev, omPolymer ibid. 23 (1982) 699.

    Google Scholar 

  12. C. J. Chou, K. Vijayan, D. Kirby, A. Hittner and E. Baer, J. Mater. Sci. 23 (1988) 2521.

    Google Scholar 

  13. W. Y. Tam, T. Cheung and R. K. Y. Li, Polymer Testing 15 (1996) 363.

    Google Scholar 

  14. S. V. Nair, M. L. Shiao and P. D. Garrett, J. Mater. Sci. 27 (1992) 1085.

    Google Scholar 

  15. W. Y. Chiang, W. D. Yang and B. Pukanszky,Polym. Eng. Sci. 32 (1992) 641.

    Google Scholar 

  16. J. G. Williams, “Fracture Mechanics of Polymers” (Ellis Harwood, Chichester, 1984).

    Google Scholar 

  17. J. S. Wu, Y. W. Mai and B. Cotterell, J. Mater. Sci. 28 (1993) 3373.

    Google Scholar 

  18. J. S. Wu and Y. W. Mai, Polym. Eng. Sci. 36 (1996) 2275.

    Google Scholar 

  19. S. Hashemi and J. Mugan, J. Mater. Sci. 28 (1993) 3983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tam, W.Y., Cheung, T.Y.H. & Li, R.K.Y. Impact properties of glass fibre/impact modifier/polypropylene hybrid composites. Journal of Materials Science 35, 1525–1533 (2000). https://doi.org/10.1023/A:1004701501431

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004701501431

Keywords

Navigation