Skip to main content
Log in

Capillary instability and breakup of a viscous thread

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Papageorgiou derived a similarity solution that describes the asymptotic behavior of a thinning viscous thread suspended in vacuum, near the critical time and around the location of breakup. The motion is driven by surface tension, and the fluid inertia is neglected throughout the evolution. To assess the physical relevance of the similarity solution, the evolution of an infinite thread immersed in an ambient fluid with arbitrary viscosity, subject to periodic axisymmetrtic perturbations is simulated through solution of the equations of Stokes flow by a boundary integral method. The results show that when the thread is suspended in vacuum, the similarity solution accurately describes the process of thinning over an extended length of the thread between the developing bulges, and captures the late stages of breakup for a broad range of initial conditions. But a small amount of ambient fluid viscosity, as small as 0.05 times the viscosity of the thread fluid, drastically alters the nature of the motion by shifting the location of the breakup points toward the bases of developing bulges, and causing the thread to develop locally asymmetric shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tjahjadi and J. M. Ottino, Stretching and breakup of droplets in chaotic flows. J. Fluid Mech. 232 (1991) 191-219.

    Google Scholar 

  2. A. H. P. Skelland and P. G. Walker, The effects of surface active agents on jet breakup in liquid-liquid systems. Can. J. Chem. Eng. 67 (1989) 762-770.

    Google Scholar 

  3. A. H. P. Skelland and E. A. Slaymaker, Effects of surface-active agents on drop size in liquid-liquid systems. Ind. Eng. Chem. Res. 29 (1990) 494-499.

    Google Scholar 

  4. D. B. Bogy, Drop formation in a circular liquid jet. Ann. Rev. Fluid Mech. 11 (1979) 207-228.

    Google Scholar 

  5. R. R. Allen, J. D. Meyer, and W. R. Knight, Thermodynamics and hydrodynamics of thermal ink jets. Hewlett-Packard Journal, May issue (1985) 221-227.

  6. D. M. Henderson, W. G. Pritchard, and L. B. Smolka, On the pinch-off of a pendant drop of viscous fluid. Phys. Fluids 9 (1997) 3188-3200.

    Google Scholar 

  7. C. V. Boys Soap Bubbles. New York: Dover (1959) 192 pp.

    Google Scholar 

  8. J. Eggers, Nonlinear dynamics and breakup of free-surface flows. Rev. Modern Phys. 69 (1997) 865-930.

    Google Scholar 

  9. S. P. Lin and R. D. Reitz, Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30 (1998) 85-105.

    Google Scholar 

  10. J. Plateau Statique Experimentale et Theoretique des Liquides Soumis aux Seules Forces Moleculaires. Paris: Gautier-Villars (1873) 495 pp.

    Google Scholar 

  11. L. Rayleigh, On the instability of jets. Proc. London Math. Soc. 10 (1878) 4-13.

    Google Scholar 

  12. L. Rayleigh, On the stability of a cylinder of viscous liquid under capillary force Phil. Mag. 34 (1892) 145.

    Google Scholar 

  13. Z. Z. Weber, Zum Zerfall eines Flüssigkeitsstrahles, Z. Math. Mech. 11 (1931) 136-154.

    Google Scholar 

  14. S. Tomotika, On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. Roy. Soc. A 150 (1935) 322-337.

    Google Scholar 

  15. S. L. Goren, The instability of an annular layer thread of fluid. J. Fluid Mech. 13 (1962) 309-319.

    Google Scholar 

  16. S. L. Goren, The shape of a thread of liquid undergoing breakup. J. Colloid Sci. 19 (1964) 81-86.

    Google Scholar 

  17. L. A. Newhouse and C. Pozrikidis, The capillary instability of annular layers and liquid threads. J. Fluid Mech. 242 (1992) 193-209.

    Google Scholar 

  18. F. D. Rumscheidt and S. G. Mason, Break-up of stationary liquid threads. J. Colloid Sci. 17 (1962) 260-269.

    Google Scholar 

  19. P. H. M. Elemans, J. M. H. Janssen, and, H. E. H. Meijer, The measurement of interfacial tension in polymer/polymer systems: The breaking thread method. J. Rheol. 34 (1990) 1311-1325.

    Google Scholar 

  20. J. M. H. Janssen, Dynamics of liquid-liquid mixing. Doctoral Dissertation, Technische Universiteit Eindhoven, The Netherlands (1993) 117 pp.

    Google Scholar 

  21. D. T. Papageorgiou, Description of jet breakup. In: Y. Y. Renardy, A. C. Coward, D. T. Papageorgiou and S. M. Sun (eds), Adv. Multi-Fluid Flows. Philadelphia: SIAM (1996).

    Google Scholar 

  22. H. C. Lee, Drop formation in a liquid jet. IBM J. Res. Dev. 18 (1974) 364-369.

    Google Scholar 

  23. M. Renardy, Some comments on the surface-tension driven break-up (or the lack of it) of viscoelastic jets. J. Non-Newt. Fluid Mech. 51 (1994) 97-107.

    Google Scholar 

  24. J. Eggers, Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Letters 71 (1993) 3458-3460.

    Google Scholar 

  25. D. T. Papageorgiou, On the breakup of viscous liquid threads. Phys. Fluids 7 (1995) 1529-1544.

    Google Scholar 

  26. M. Renardy, A numerical study of the asymptotic evolution and breakup of Newtonian and viscoelastic jets. J. Non-Newt. Fluid Mech. 51 (1995) 97-107.

    Google Scholar 

  27. M. P. Brenner, J. R. Lister, and H. A. Stone, Pinching threads, singularities and the number 0.0304... Phys. Fluids 8 (1996) 2827-2836.

    Google Scholar 

  28. D. W. Bousfield, R. Keunings, G. Marrucci and M. M. Denn, Nonlinear analysis of the surface tension driven breakup of viscoelastic filaments. J. Non-Newt. Fluid Mech. 21 (1986) 79-97.

    Google Scholar 

  29. N. N. Mansour and T. S. Lundgren, Satellite formation in capillary jet breakup. Phys. Fluids A 2 (1990) 1141-1144.

    Google Scholar 

  30. M. H. Tjahjadi, H. A. Stone, and J. M. Ottino, Satellite and subsatellite formation in capillary breakup. J. Fluid Mech. 243 (1992) 297-317.

    Google Scholar 

  31. J. R. Richards, A. M. Lenhoff, and A. N. Beris, Dynamic breakup of liquid-liquid jets. Phys. Fluids 6 (1994) 2640-2655.

    Google Scholar 

  32. J. R. Richards, A. N. Beris, and A. M. Lenhoff, Drop formation in liquid-liquid systems before and after jetting. Phys. Fluids 7 (1995) 2617-2630.

    Google Scholar 

  33. J. R. Lister, and H. A. Stone, Capillary breakup of a viscous thread surrounded by another viscous fluid. Phys. Fluids 10 (1998) 2758-2764.

    Google Scholar 

  34. J. M. Rallison and A. Acrivos, A numerical study of the deformation and burst of a viscous drop in an extensional flow. J. Fluid Mech. 89 (1978) 191-200.

    Google Scholar 

  35. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge: Cambridge University Press (1992) 259 pp.

    Google Scholar 

  36. C. Pozrikidis, Numerical Computation in Science and Engineering. Oxford: Oxford University Press (1998) 627 pp.

    Google Scholar 

  37. T. A. Kowalewski, On the separation of droplets from a liquid jet. Fluid Dyn. Res. 17 (1996) 121-145.

    Google Scholar 

  38. S. Tomotika, Breakup of a drop of viscous liquid immersed in another viscous fluid which is extending at a uniform rate. Proc. Roy. Soc. A 153 (1936) 302-318.

    Google Scholar 

  39. T. Mikami, R. G. Cox, and S. G. Mason, Breakup of extending liquid threads. Int. J. Multiphase Flow 2 (1975) 113-138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozrikidis, C. Capillary instability and breakup of a viscous thread. Journal of Engineering Mathematics 36, 255–275 (1999). https://doi.org/10.1023/A:1004564301235

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004564301235

Navigation