Skip to main content
Log in

Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Littoral zones of small water bodies are spatially heterogeneous habitats, harbouring diverse biotic communities. Despite this apparent heterogeneity, many studies have stressed the importance of water chemistry in determining the structure of littoral macroinvertebrate assemblages. The purpose of this study was to consider the relative importance of several spatial and water chemistry variables in explaining the patterns in the structure of macroinvertebrate assemblages in 21 lentic water bodies in northeastern Finland. Water bodies were selected to represent various habitat conditions ranging from small permanent bog ponds to small forest lakes. According to canonical correspondence analysis (CCA), the most important environmental factors related to assemblage composition were water body area, moss cover, total nitrogen and water hardness. In general, species composition in small bog ponds tended to differ from that in larger lakes with forested shoreline. Total species richness was best explained by a composite variable (PCA) describing physical habitat heterogeneity, species richness being lowest in small bog lakes with simple bottom structure and low amount of aquatic plants. Species numbers in dominant functional feeding groups were related to different environmental factors. Shredder species richness was best explained by a regression model incorporating total nitrogen and the amount of organic matter, both of which were negatively related to the number of shredder species. The number of gatherer species increased with mean substratum particle size. Scraper species richness was negatively affected by the abundance of detritus and positively affected by depth, and a model including both variables explained most of the variation. Variation in the number of predatory species was best explained by a regression model including moss cover and lake area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aho, J. M., 1978. Freshwater snail populations and the equilibrium theory of island biogeography. II. Relative importance of chemical and spatial variables. Ann. Zool. Fennici 15: 155–164.

    Google Scholar 

  • Ahti, T., L. Hämet-Ahti & J. Jalas, 1968. Vegetation zones and their sections in northern Europe. Ann. bot. fenn. 5: 169–211.

    Google Scholar 

  • Allan, J. D., 1995. Stream Ecology. Structure and Function of Running Waters. Chapman and Hall, London: 400 pp.

    Google Scholar 

  • Batzer, D. P. & S. A. Wissinger, 1996. Ecology of insect communities on nontidal wetlands. Ann. Rev. Ent. 41: 75–100.

    Google Scholar 

  • Begon, M., J. L. Harper & C. R. Townsend, 1996. Ecology. 3rd edn. Blackwell, Oxford: 1068 pp.

    Google Scholar 

  • Bendell, B. E. & D. K. McNicol, 1987. Fish predation, lake acidity and the composition of aquatic insect assemblages. Hydrobiologia 150: 193–202.

    Google Scholar 

  • Bendell, B. E. & D. K. McNicol, 1995. Lake acidity, fish predation and the distribution and abundance of some littoral insects. Hydrobiologia 302: 133–145.

    Google Scholar 

  • Bennet, D. V. & F. A. Streams, 1986. Effects of vegetation on Notonecta (Hemiptera) distribution in ponds with and without fish. Oikos 46: 62–69.

    Google Scholar 

  • Brodersen, K. P., P. C. Dall & C. Lindegaard, 1998. The invertebrate fauna in the upper stony littoral of Danish lakes: macroinvertebrates as trophic indicators. Freshwat. Biol. 39: 577–592.

    Google Scholar 

  • Brown, C. L., P. P. Poe, J. R. P. French & D. W. Schlosser, 1988. Relationships of phytomacrofauna to surface area in naturally occurring macrophyte stands. J. n. am. Benthol. Soc. 7: 129–139.

    Google Scholar 

  • Brönmark, C., 1985. Freshwater snail diversity: effects of pond area, habitat heterogeneity and isolation. Oecologia 67: 127–131.

    Google Scholar 

  • Carpenter, S. R. & D. M. Lodge, 1986. Effects of submerged macrophytes on ecosystem processes. Aquat. Bot. 26: 341–370.

    Google Scholar 

  • Connor, E. F. & E. D. McCoy, 1979. The statistics and biology of the species area relationship. Am. Nat. 113: 791–833.

    Google Scholar 

  • Cummins, K. W., 1973. Trophic relationships of aquatic insects. Ann. Rev. Ent. 18: 183–206.

    Google Scholar 

  • Diehl, S., 1992. Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology 73: 1646–1661.

    Google Scholar 

  • Duarte, C. & J. Kalff, 1986. Littoral slope as a predictor of maximum biomass of submerged macrophyte communities. Limnol. Oceanogr. 31: 1072–1080.

    Google Scholar 

  • Eadie, J. M. & A. Keast, 1984. Resource heterogeneity and fish species diversity in lakes. Can. J. Zool. 62: 1689–1695.

    Google Scholar 

  • Edington, J. M. & A. G. Hildrew, 1995. A revised key to the caseless caddis larvae of the British Isles. Freshwat. Biol. Ass. Scient. Publ. 53: 1–138.

    Google Scholar 

  • Elliott, J. M., U. H. Humbesch & T. T. Macan, 1988. Larvae of the British Ephemeroptera. A key with ecological notes. Freshwat. Biol. Ass. Scient. Publ. 49: 1–151.

    Google Scholar 

  • Engblom, E., P. E. Lingdell & A. N. Nilsson, 1990. Sveriges bäckbaggar (Coleoptera, Elmidae)-artbestämning, habitatval och värde som miljöindikatorer. Entomol. Tidskr. 11: 105–121 (in Swedish).

    Google Scholar 

  • France, R., 1990. Epiphytic zoobenthos density and biomass within low alkalinity, oligotrophic lakes on the Canadian Shield. Arch. Hydrobiol. 118: 477–499.

    Google Scholar 

  • France, R. L., 1995. Macroinvertebrate standing crop in littoral regions of allochthonous detritus accumulation: implications for forest management. Biol. Cons. 71: 35–39.

    Google Scholar 

  • Friday, L. E., 1987. The diversity of macroinvertebrate and macrophyte communities in ponds. Freshwat. Biol. 18: 87–104.

    Google Scholar 

  • Fryer, G., 1985. Crustacean diversity in relation to the size of water bodies: some facts and problems. Freshwat. Biol. 15: 347–361.

    Google Scholar 

  • Gauch, H. G., 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, Cambridge: 298 pp.

    Google Scholar 

  • Gilinsky, E., 1984. The role of fish predation and spatial heterogeneity in determining benthic community structure. Ecology 65: 455–468.

    Google Scholar 

  • Hanlon, R. D., 1981. Allochtonous plant litter as a source of organic material in an oligotrophic lake (Llyn Frongoch). Hydrobiologia 80: 257–261.

    Google Scholar 

  • Henrikson, B.-I., 1993. Sphagnum mosses as a microhabitat for invertebrates in acidified lakes and the color adaptation and substrate preference in Leucorrhinia dubia (Odonata, Anisoptera). Ecography 16: 143–153.

    Google Scholar 

  • Hildrew, A. G. & C. R. Townsend, 1987. Organization in freshwater benthic communities. In Gee, J. H. R. & P. S. Giller (eds), Organization of Communities Past and Present. Blackwell, Oxford: 347–371.

    Google Scholar 

  • Hill, J. L., P. J. Curran & G. M. Foody, 1994. The effect of sampling on the species-area curve. Glob. Ecol. Biodiv. Lett. 4: 97–106.

    Google Scholar 

  • Hoffman, R. L., W. J. Liss, G. L. Larson, E. K. Deimling & G. A. Lomnicky, 1996. Distribution of nearshore macroinvertebrates in lakes of the northern Cascade Mountains, Washington, U.S.A. Arch. Hydrobiol. 136: 363–389.

    Google Scholar 

  • Huston, M. L., 1994. Biological Diversity. The Coexistence of Species on Changing Landscapes. Cambridge University Press, Cambridge: 682 pp.

    Google Scholar 

  • Jeffries, M., 1989. Measuring Talling's 'element of chance' in pond populations. Freshwat. Biol. 21: 383–393.

    Google Scholar 

  • Jeffries, M., 1991. The ecology and conservation value of forestry ponds in Scotland, United Kingdom. Biol. Cons. 58: 191–211.

    Google Scholar 

  • Jones, P. D. & Momot, W. T., 1981. Crayfish productivity, allocthony, and basin morphometry. Can. J. Fish. aquat. Sci. 38: 175–183.

    Google Scholar 

  • Larson, D. L., 1985. Structure in temperate predaceous diving beetle communities (Coleoptera, Dytiscidae. Holarct. Ecol. 8: 18–32.

    Google Scholar 

  • MacArthur, R. J. & E. O. Wilson, 1967. The Theory of Island Biogeography. Princeton University Press, New Jersey: 216 pp.

    Google Scholar 

  • McCune, B., 1997. Influence of noisy environmental data on canonical correspondence analysis. Ecology 78: 2617–2623.

    Google Scholar 

  • McLachlan, A. J. & S. M. McLachlan, 1975. The physical environment and bottom fauna of a bog lake. Hydrobiologia 76: 198–217.

    Google Scholar 

  • Merritt, R. W. & K. W. Cummins (eds), 1984. An Introduction to the Aquatic Insects of North America. 2nd edn. Kendall/Hunt, Dubuque: 722 pp.

    Google Scholar 

  • Minshall, G. W., 1984. Aquatic insect-substratum relationships. In Resh, V. H. & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger, New York: 358–400.

    Google Scholar 

  • Nilsson, A. N., J. Elmberg & K. Sjöberg, 1994. Abundance and species richness patterns of diving beetles (Coleoptera, Dytiscidae) in Swedish lakes. J. Biogeography 21: 197–206.

    Google Scholar 

  • Nilsson, A. N. & H. Söderberg, 1996. Abundance and distribution patterns of diving beetles (Coleoptera, Dytiscidae) from exposed and protected sites in 98 northern Swedish lakes. Hydrobiologia 321: 83–88.

    Google Scholar 

  • Okland, J., 1990. Lakes and Snails. Universal Book Services/W Backhyus, Oegstgeest.

  • Palmer, M. W., 1993. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74: 2215–2230.

    Google Scholar 

  • Pennak, R. W., 1978. Freshwater Invertebrates of the United States. John Wiley & Johns, New York: 803 pp.

    Google Scholar 

  • Rahel, F., 1984. Factors structuring fish assemblages along a bog lake successional gradient. Ecology 65: 1276–1289.

    Google Scholar 

  • Ranta, E., 1985. Communities of water beetles in different kinds of water in Finland. Proc Acad. nat. Sci. Philad. 137: 33–45.

    Google Scholar 

  • Rasmussen, J. B., 1988. Littoral zoobenthic biomass in lakes, and its relationship to physical, chemical and trophic factors. Can. J. Fish. aquat. Sci. 45: 1436–1447.

    Google Scholar 

  • Rasmussen, J. B. & J. Kalff, 1987. Empirical models for zoobenthic biomass in lakes. Can. J. Fish. aquat. Sci. 44: 990–1001.

    Google Scholar 

  • Robinson, C. L. K. & W. M. Tonn, 1989. Influence of environmental factors and piscivory in structuring fish assemblages of small Alberta lakes. Can. J. Fish. aquat. Sci. 46: 81–89.

    Google Scholar 

  • Rodriquez, M. A. & W. M. Lewis, 1997. Structure of fish assemblages along environmental gradients in floodplain lakes of the Orinoco River. Ecol. Monogr. 67: 109–128.

    Google Scholar 

  • Rosenzweig, M. J., 1995. Species Diversity in Space and Time. Cambridge University Press, Cambridge: 436 pp.

    Google Scholar 

  • Sokal, R. & J. Rolf, 1994. Biometry. The Principles and Practice of Statistics in Biological Research. Freeman, New York: 887 pp.

    Google Scholar 

  • ter Braak, C. J. F., 1991. Program CANOCO, version 3.12. Agricultural Mathematics Group DLO, Wageningen.

    Google Scholar 

  • ter Braak, C. J. F., 1995. Ordination. In Jongman, R. H. G., C. J. F. ter Braak & O. F. Van Tongeren (eds), Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge: 91–173.

    Google Scholar 

  • Tonn, W. M. & J. J. Magnuson, 1982. Patterns in the species composition and richness of fish assemblages in northern Wisconsin lakes. Ecology 63: 1149–1166.

    Google Scholar 

  • Wallace, H. B. & J. R. Webster, 1996. The role of macroinvertebrates in stream ecosystem function. Ann. Rev. Ent. 41: 115–139.

    Google Scholar 

  • Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Ann. Rev. Ecol. Syst. 17: 567–594.

    Google Scholar 

  • Wellborn, G. A., D. K. Skelly & E. W. Werner, 1996. Mechanisms creating community structure across a freshwater habitat gradient. Ann. Rev. Ecol. Syst. 27: 337–363.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology. 2nd edn. Saunders, New York: 767 pp.

    Google Scholar 

  • Wissmar, R. C., 1991. Forest detritus and cycling of nitrogen in a mountain lake. Can. J. Forest Res. 21: 990–998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heino, J. Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry. Hydrobiologia 418, 229–242 (2000). https://doi.org/10.1023/A:1003969217686

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003969217686

Navigation