Skip to main content
Log in

Large-Eddy Simulation Of Radiation Fog

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

In order to study the three-dimensional structure of radiation fogand to obtain a basic understanding of its generation mechanism,a numerical experiment is performed with a large-eddysimulation model and compared with the observation at Cabauw in the Netherlands. After confirming that the results are insatisfactory agreement with the observations, the structure of thefog and its generation mechanism are examined in more detail.

Before the fog forms, the atmosphere is stable and an inversionlayer exists almost adjacent to the ground surface. As the fog grows, however, the stratification is destabilized and a mixed layerdevelops gradually. The longwave radiative cooling near thefog top contributes to the destabilization more than thecondensational heating does.

The evolution of the fog can be classified into three stagesaccording to the behaviour of turbulent kinetic energy (TKE):formation, development, and dissipation stages.The fog layer has different flow structures at each stage.During the formation stage, longitudinal rolls similar tostreaks in channel flows appear near the ground surface.The development stage is characterized by an initiation oftransverse bands due to Kelvin–Helmholtz instability anda sudden increase of TKE. During the dissipation stage, longitudinalrolls and polygonal cells due to convective instability are organized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrén, A.: 1995, 'The Structure of Stably Stratified Atmospheric Boundary Layers: A Large-Eddy Simulation Study', Quart. J. Roy. Meteorol. Soc. 121, 961–985.

    Google Scholar 

  • Asai, T.: 1970, 'Stability of a Plane Parallel Flow with Variable Vertical Shear and Unstable Stratification', J. Meteorol. Soc. Japan 48, 129–139.

    Google Scholar 

  • Atkinson, B. W. and Zhang, J. Wu: 1996, 'Mesoscale Shallow Convection in the Atmosphere', Rev. Geophys. 34, 403–431.

    Google Scholar 

  • Beljaars, A. C. M. and Holtslag, A. A. M.: 1991, 'Flux Parameterization over Land Surfaces for Atmospheric Models', J. Appl. Meteorol. 30, 327–341.

    Google Scholar 

  • Bergot, T. and Guedalia, D.: 1994, 'Numerical Forecasting of Radiation Fog. Part I: Numerical Model and Sensitivity Tests', Mon. Wea. Rev. 122, 1218–1230.

    Google Scholar 

  • Brown, A. R., Derbyshire, S. H., and Mason, P. J.: 1994, 'Large-Eddy Simulation of Stable Atmospheric Boundary Layers with a Revised Stochastic Subgrid Model', Quart. J. Roy. Meteorol. Soc. 120, 1485–1512.

    Google Scholar 

  • Brown, R. and Roach, W. T.: 1976, 'The Physics of Radiation Fog: II-A Numerical Study', Quart. J. Roy. Meteorol. Soc. 102, 335–354.

    Google Scholar 

  • Brown, R. A.: 1980, 'Longitudinal Instabilities and Secondary Flows in the Planetary Boundary Layer: A Review', Rev. Geophys. Space Phys. 18, 683–697.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, 'Flux-Profile Relationships in the Atmospheric Surface Layer', J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Canuto, V. M. and Minotti, F.: 1993, 'Stratified Turbulence in the Atmosphere and Oceans: A New Subgrid Model', J. Atmos. Sci. 50, 1925–1935.

    Google Scholar 

  • Chen, C. and Cotton, W. R.: 1983, 'A One-Dimensional Simulation of the Stratocumulus-Capped Mixed Layer', Boundary-Layer Meteorol. 25, 289–321.

    Google Scholar 

  • Davis, P. A. and Peltier, W. R.: 1976, 'Resonant Parallel Shear Instability in the Stably Stratified Planetary Boundary Layer', J. Atmos. Sci. 33, 1287–1300.

    Google Scholar 

  • Deardorff, J. W.: 1972, 'Numerical Investigation of Neutral and Unstable Planetary Boundary Layers', J. Atmos. Sci. 29, 91–115.

    Google Scholar 

  • Deardorff, J. W.: 1978, 'Efficient Prediction of Ground Surface Temperature and Moisture, with Inclusion of a Layer of Vegetation', J. Geophys. Res. 83(C4), 1889–1903.

    Google Scholar 

  • Duynkerke, P. G.: 1991, 'Radiation Fog: A Comparison of Model Simulation with Detailed Observations', Mon. Wea. Rev. 119, 324–341.

    Google Scholar 

  • Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, 316 pp.

    Google Scholar 

  • Grossman, R. L.: 1982, 'An Analysis of Vertical Velocity Spectra Obtained in the BOMEX Fair-Weather, Trade-Wind Boundary Layer', Boundary-Layer Meteorol. 23, 323–357.

    Google Scholar 

  • Howard, L. N.: 1961, 'Note on a Paper of John W. Miles', J. Fluid Mech. 10, 509–512.

    Google Scholar 

  • Hunt, J. C. R., Kaimal, J. C., and Gaynor, J. E.: 1988, 'Eddy Structure in the Convective Boundary Layer-New Measurements and New Concepts', Quart. J. Roy. Meteorol. Soc. 114, 827–858.

    Google Scholar 

  • Katayama, A.: 1972, A Simplified Scheme for Computing Radiative Transfer in the Troposphere, Numerical Simulation ofWeather and Climate, Technical Report No. 6, University of California, Los Angeles, 77 pp.

  • Khanna, S. and Brasseur, J. G.: 1998, 'Three-Dimensional Buoyancy-and Shear-Induced Local Structure of the Atmospheric Boundary Layer', J. Atmos. Sci. 55, 710–743.

    Google Scholar 

  • Klaassen, G. P. and Peltier, W. R.: 1985, 'Evolution of Finite Amplitude Kelvin-Helmholtz Billows in Two Spatial Dimensions', J. Atmos. Sci. 42, 1321–1339.

    Google Scholar 

  • Klemp, J. B. and Lilly, D. K.: 1978, 'Numerical Simulation of Hydrostatic Mountain Waves', J. Atmos. Sci. 35, 78–107.

    Google Scholar 

  • Kunkel, B. A.: 1984, 'Parameterization of Droplet Terminal Velocity and Extinction Coefficient in Fog Models', J. Clim. Appl. Meteorol. 23, 34–41.

    Google Scholar 

  • Kurita, S., Okada, K., Naruse, H., Ueno, T., and Mikami, M.: 1990, 'Structure of a Fog in the Dissipation Stage over Land', Atmos. Environ. 24A, 1473–1486.

    Google Scholar 

  • Lacis, A. A. and Hansen, J. E.: 1974, 'A Parameterization for the Absorption of Solar Radiation in the Earth's Atmosphere', J. Atmos. Sci. 31, 118–133.

    Google Scholar 

  • Lilly, D.K.: 1966a, 'On the Application of the Eddy-Viscosity Concept in the Inertial Subrange of Turbulence', Manuscript No. 123, National Center for Atmospheric Research, Boulder, CO, 19 pp.

    Google Scholar 

  • Lilly, D.K.: 1966b, 'On the Instability of Ekman Boundary Flow', J. Atmos. Sci. 23, 481–494.

    Google Scholar 

  • Mason, P. J. and Thomson, D. J.: 1992, 'Stochastic Backscatter in Large-Eddy Simulations of Boundary Layers', J. Fluid Mech. 242, 51–78.

    Google Scholar 

  • Mellor, G. L.: 1977, 'The Gaussian Cloud Model Relations', J. Atmos. Sci. 34, 356–358.

    Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1974, 'A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers', J. Atmos. Sci. 31, 1791–1806.

    Google Scholar 

  • Miles, J. W.: 1961, 'On the Stability of Heterogeneous Shear Flows', J. Fluid Mech. 10, 496–508.

    Google Scholar 

  • Moeng, C.-H. and Sullivan, P. P.: 1994, 'A Comparison of Shear-and Buoyancy-Driven Planetary Boundary Layer Flows', J. Atmos. Sci. 51, 999–1022.

    Google Scholar 

  • Moin, P. and Kim, J.: 1982, 'Numerical Investigation of Turbulent Channel Flow', J. Fluid Mech. 118, 341–377.

    Google Scholar 

  • Musson-Genon, L.: 1987, 'Numerical Simulation of a Fog Event with a One-Dimensional Boundary Layer Model', Mon. Wea. Rev. 115, 592–607.

    Google Scholar 

  • Pilié, R. J., Mack, E. J., Rogers, C. W., Katz, U., and Kocmond, W. C.: 1979, 'The Formation of Marine Fog and the Development of Fog-Stratus Systems along the California Coast', J. Appl. Meteorol. 18, 1275–1286.

    Google Scholar 

  • Roach, W. T., Brown, R., Caughey, S. J., Garland, J. A., and Readings, C. J.: 1976, 'The Physics of Radiation Fog: I-A Field Study', Quart. J. Roy. Meteorol. Soc. 102, 313–333.

    Google Scholar 

  • Schumann, U.: 1975, 'Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli', J. Comp. Phys. 18, 376–404.

    Google Scholar 

  • Smagorinsky, J. S.: 1963, 'General Circulation Experiments with the Primitive Equations: I. The Basic Experiment', Mon. Wea. Rev. 91, 99–164.

    Google Scholar 

  • Sommeria, G. and Deardorff, J.W.: 1977, 'Subgrid-Scale Condensation in Models of Nonprecipitating Clouds', J. Atmos. Sci. 34, 344–355.

    Google Scholar 

  • Stephens, G. L.: 1978, 'Radiation Profiles in Extended Water Clouds. II: Parameterization Schemes', J. Atmos. Sci. 35, 2123–2132.

    Google Scholar 

  • Stephens, G. L., Ackerman, S., and Smith, E. A.: 1984, 'A Shortwave Parameterization Revised to Improve Cloud Absorption', J. Atmos. Sci. 41, 687–690.

    Google Scholar 

  • Sullivan, P. P., McWilliams, J. C., and Moeng, C.-H.: 1994, 'A Subgrid-Scale Model for Large-Eddy Simulation of Planetary Boundary-Layer Flows', Boundary-Layer Meteorol. 71, 247–276.

    Google Scholar 

  • Weckwerth, T. M., Wilson, J. W., Wakimoto, R. M., and Crook, N. A.: 1997, 'Horizontal Convective Rolls: Determining the Environmental Conditions Supporting their Existence and Characteristics', Mon. Wea. Rev. 125, 505–526.

    Google Scholar 

  • Welch, R. M. and Wielicki, B. A.: 1986, 'The Stratocumulus Nature of Fog', J. Clim. Appl.Meteorol. 25, 101–111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakanishi, M. Large-Eddy Simulation Of Radiation Fog. Boundary-Layer Meteorology 94, 461–493 (2000). https://doi.org/10.1023/A:1002490423389

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002490423389

Navigation