Skip to main content
Log in

Multidrug resistance in lactic acid bacteria: molecular mechanisms and clinical relevance

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The active extrusion of cytotoxic compounds from the cell by multidrug transporters is one of the major causes of failure of chemotherapeutic treatment of tumor cells and of infections by pathogenic microorganisms. The secondary multidrug transporter LmrP and the ATP-binding cassette (ABC) type multidrug transporter LmrA in Lactococcus lactis are representatives of the two major classes of multidrug transporters found in pro- and eukaryotic organisms. Therefore, knowledge of the molecular properties of LmrP and LmrA will have a wide significance for multidrug transporters in all living cells, and may enable the development of specific inhibitors and of new drugs which circumvent the action of multidrug transporters. Interestingly, LmrP and LmrA are transport proteins with very different protein structures, which use different mechanisms of energy coupling to transport drugs out of the cell. Surprisingly, both proteins have overlapping specificities for drugs, are inhibited by t he same set of modulators, and transport drugs via a similar transport mechanism. The structure-function relationships that dictate drug recognition and transport by LmrP and LmrA will represent an intriguing new area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altenberg GA, Vanoye CG, Horton JK & Reuss L (1994) Unidirectional fluxes of rhodamine 123 in multidrug resistant cells: Evidence against direct extrusion from the plasma membrane. Proc. Natl. Acad. Sci. USA 91: 4654-4657

    Google Scholar 

  • Bolhuis H, Molenaar D & Poelarends G, et al. (1994) Proton motive force-driven and ATP-dependent drug extrusion systems in multidrug resistant Lactococcus lactis. J. Bacteriol. 176: 6957-6964

    Google Scholar 

  • Bolhuis H, Poelarends G & van Veen HW, et al. (1995) The lactococcal lmrP gene encodes a proton motive force-dependent drug transporter. J. Biol. Chem. 270: 26092-26098

    Google Scholar 

  • Bolhuis H, van Veen HW & Brands JR et al. (1996a) Energetics and mechanism of drug transport mediated by the lactococcal MDR transporter LmrP. J. Biol. Chem. 271: 24123-24128

    Google Scholar 

  • Bolhuis H, van Veen HW & Molenaar D et al. (1996b) Multidrug resistance in Lactococcus lactis: evidence for ATP-dependent drug extrusion from the inner leaflet of the cytoplasmic membrane. EMBO J. 15: 4239-4245

    Google Scholar 

  • Borst P & Ouellette M (1995) New mechanisms of drug resistance in parasitic protozoa. Annu. Rev. Microbiol. 49: 427-460

    Google Scholar 

  • Davies J (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264: 375-382

    Google Scholar 

  • Endicott JA & Ling V (1989) The biochemistry of P-glycoprotein mediated multidrug resistance. Annu. Rev. Biochem. 58, 137-171

    Google Scholar 

  • Ferry DR & Kerr DJ (1994) P-glycoprotein, a transporter with allosterically coupled drug-acceptor sites as a target for rational drug design. In: Kerr DJ & Workman P (Eds) New Molecular Targets For Cancer Chemotherapy (pp 177-193). CRC Press, London

    Google Scholar 

  • Ferry DR, Russell MA & Cullen MH (1992) P-glycoprotein possesses a 1,4-dihydropyridine-selective drug acceptor site which is allosterically coupled to a vinca-alkaloid selective bindign site. Biochem. Biophys. Res. Commun. 188: 440-445

    Google Scholar 

  • Germann UA (1996) P-glycoprotein — a mediator of multidrug resistance in tumour cells. Eur. J. Cancer 32A: 927-944

    Google Scholar 

  • Gottesman MM, Hrycyna CA, Schoenlein PV et al. (1995) Genetic analysis of the multidrug transporter. Annu. Rev. Genet. 29: 607-649

    Google Scholar 

  • Greenberger LM (1993) Major photoaffinity drug labeling sites for iodoaryl azidoprazosin in P-glycoprotein are within, or immediately C-terminal to, transmembrane domain 6 and 12. J. Biol. Chem. 268: 11417-11425

    Google Scholar 

  • Higgins CF & Gottesman MM (1992) Is the multidrug transporter a flippase? TIBS 17: 18-21

    Google Scholar 

  • Homolya L, Holló Z & Germann UA et al. (1993) Fluorescent cellular indicators are extruded by the multidrug resistance protein. J. Biol. Chem. 268: 21493-21496

    Google Scholar 

  • Hughes JM & Tenover FC (1997) Approaches to limiting emergence of antimicrobial resistance in bacteria in human populations. Clin. Infect. Diseases 24: S131-135

    Google Scholar 

  • Lewis K (1994) Multidrug resistance pumps in bacteria: variations on a theme. Trends in Biochemical Sciences 19: 119-123

    Google Scholar 

  • Margolles M, Putman M, van Veen HW & Konings WN. Functional reconstitution into proteoliposomes of LmrA, the bacterial homolog of the human multidrug resistance P-glycoprotein. (Submitted.)

  • Martin C, Berridge G, Higgins CF & Callaghan R (1997) The multidrug resistance reversal agent SR33557 and modulation of vinca alkaloid binding to P-glycoprotein by an allosteric interaction. Br. J. Pharmacol. 122: 765-771

    Google Scholar 

  • Morris DI, Greenberger LM & Bruggeman EP et al. (1994) Localization of the forskolin labeling sites for both halves of P-glycoprotein: similarity of the sites labeled by forskolin and prazosin. Mol. Pharmacol. 46: 329-337

    Google Scholar 

  • Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264: 382-388

    Google Scholar 

  • Perreten V, Schwarz F & Cresta L et al. (1997) Antibiotic resistance spread in food. Nature 389: 801-802

    Google Scholar 

  • Putman M, van Veen HW, Degener JE & Konings WN. The lactococcal multidrug transporters LmrA and LmrP confer resistance to a broad range of antibiotics. (Submitted)

  • Putman M, van Veen HW, Poolman B & Konings WN (1999a) Restrictive use of detergents in the functional reconstitution of the secondary multidrug transporter LmrP. Biochemistry 38: 1002-1008

    Google Scholar 

  • Putman M, Koole L, van Veen HW & Konings WN. (1999b) The secondary multidrug transporter LmrP contains multiple drug interaction sites. Biochemistry (In press)

  • Raviv Y, Pollard HB & Bruggeman EP et al. (1990) Photosensitized labeling of a functional multidrug transporter in living drug resistant tumor cells. J. Biol. Chem. 265: 3975-3980

    Google Scholar 

  • Rosenberg MF, Callaghan R, Ford RC & Higgins CF (1997) Structure of the multidrug resistance P-glycoprotein to 2.5 nm resolution determined by electron microscopy and image analysis. J. Biol. Chem. 272: 10685-10694

    Google Scholar 

  • Ruetz S & Gros P (1994) Phosphatidylcholine translocase: a physiological role for the mdr2 gene. Cell 77: 1071-1081

    Google Scholar 

  • de Ruyter PGGA, Kuipers O & de Vos WM (1996) Controlled gene expression systems in Lactococcus lactis with the food-grade inducer nisin. Apl. Environ. Microbiol. 62: 3662-3667

    Google Scholar 

  • Sami M, Yamashita H & Hirono T et al. (1997) Hop-resistant Lactobacillus brevis contains a novel plasmid harboring a multidrug resistance-like gene. J. Ferment. Bioeng. 84: 1-6

    Google Scholar 

  • Shapiro AB & Ling V (1997a) Extraction of Hoechst 33342 from the cytoplamsic leaflet of the plasma membrane by P-glycoprotein. Eur. J. Biochem. 250: 122-129

    Google Scholar 

  • Shapiro AB & Ling V (1997b) P-glycoprotein-mediated Hoechst 33342 transport out of the lipid bilayer. Eur. J. Biochem. 250: 115-121

    Google Scholar 

  • Sheps JA, Cheung I & Ling V (1995) Hemolysin transport in Escherichia coli: point mutations in HlyB compensate for a deletion in the predicted amphiphilic helix regions of the HlyA signal. J. Biol. Chem. 270: 14829-14834

    Google Scholar 

  • Smit JJM, Schinkel AH & Oude Elferink RPJ et al. (1993) Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile an to liver disease. Cell 75: 451-462

    Google Scholar 

  • Spratt BG (1994) Resistance to antibiotics mediated by target alterations. Science 264: 388-393

    Google Scholar 

  • van Veen HW, Callaghan R & Soceneantu L et al. (1998) A bacterial antibiotic resistance gene that complements the human multidrug resistance P-glycoprotein gene. Nature 391: 291-295

    Google Scholar 

  • van Veen HW & Konings WN (1997) Multidrug transporters from bacteria to man: similarities in structure and function. Sem. Cancer Biol. 8: 183-191

    Google Scholar 

  • van Veen HW & Konings WN (1998) The ABC family of multidrug transporters in microorganisms. Biochim. Biophys. Acta 1365: 31-36

    Google Scholar 

  • van Veen HW, Venema K & Bolhuis H et al. (1996) Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proc. Natl. Acad. Sci. USA 93: 10668-10672

    Google Scholar 

  • Zhang F, Yin Y, Arrowsmith CH & Ling V (1995) Secretion and circular dichroism analysis of the C-terminal signal peptides of HlyA and LktA. Biochemistry 34: 4193-4201

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik W. van Veen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Veen, H.W., Margolles, A., Putman, M. et al. Multidrug resistance in lactic acid bacteria: molecular mechanisms and clinical relevance. Antonie Van Leeuwenhoek 76, 347–352 (1999). https://doi.org/10.1023/A:1002033923510

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002033923510

Navigation