Skip to main content
Log in

Rhodococcal systematics: problems and developments

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Various approaches that have been used in the development of a system of classification for the genus Rhodococcus are discussed. The application of chemotaxonomic, molecular systematic and numerical phenetic methods have greatly contributed to improvements in the systematics of rhodococci and related mycolic- acid containing actinomycetes. The genus currently encompasses twelve validly described species but improved diagnostic methods are needed to distinguish between them. In addition, evidence from 16S ribosomal RNA sequencing suggests that the genus is still heterogeneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams JN & McClung NM (1960) Morphological studies in the genus Nocardia. V. Septation in Nocardia rubra and Jensenia canicruria. J. Bacteriol. 80: 281–282

    Google Scholar 

  • Adams JN & McClung NM (1962) Comparison of the developmental cycles of some members of the genus Nocardia. J. Bacteriol. 84: 206–216.

    Google Scholar 

  • Adams MM, Adams JN & Brownell GH (1970) The identification of Jensenia canicruria Bisett and Moore as a mating type of Nocardia erythropolis (Gray and Thornton) Waksman and Henrici. Int. J. Syst. Bacteriol. 20: 133–148

    Google Scholar 

  • Alshamaony L, Goodfellow M & Minnikin DE (1976a) Free mycolic acids as criteria in the classification of Nocardia and the & #x2018;rhodochrous & #x2019; complex. J. Gen. Microbiol. 92: 188–199

    Google Scholar 

  • Alshamaony L, Goodfellow M, Minnikin DE & Mordarska H (1976b) Free mycolic acids as criteria in the classification of Gordona and the & #x2018;rhodochrous & #x2019; complex. J. Gen. Microbiol. 92: 183–187

    Google Scholar 

  • Apajalahti JHA, K & #x00E4;rp & #x00E4;noja P & Salkinoja-Salonen MS (1986) Rhodococcus chlorophenolicus sp. nov., a chlorophenol-mineralising actinomycete. Int. J. Syst. Bacteriol. 36: 246–251

    Google Scholar 

  • Beard TM & Page MI (1998) Enantioselective biotransformations using rhodococci. Antonie van Leeuwenhoek 74: 99–106.

    Google Scholar 

  • Bell S, Philp JC, Christofi N & Aw DWJ (1992) Identification of Rhodococcus equi using the polymerase chain reaction. Lett. Appl. Microbiol. 23: 72–74

    Google Scholar 

  • Bell S, Philp JC, Aw DWJ & Christofi N (1998) A Review: The genus Rhodococcus. J. Appl. Microbiol. 85:195–210

    Google Scholar 

  • Bergey DH, Harrison FC, Breed RS, Hammer BW & Huntoon FM (1923) Bergey & #x2019;s Manual of Determinative Bacteriology, 1st Edition. The Williams & Wilkins Co., Baltimore

    Google Scholar 

  • Bergey DH, Harrison FC, Breed RS, Hammer BW & Huntoon FM (1925) Bergey & #x2019;s Manual of Determinative Bacteriology, 2nd Edition. The Williams & Wilkins Co., Baltimore

    Google Scholar 

  • Bergey DH, Harrison FC, Breed RS, Hammer BW & Huntoon FM (1930) Bergey & #x2019;s Manual of Determinative Bacteriology, 3rd Edition. The Williams & Wilkins Co., Baltimore

    Google Scholar 

  • Bergey DH, Breed RS, Hammer BW, Huntoon FM, Murray EGD & Harrison FC (1934) Bergey & #x2019;s Manual of Determinative Bacteriology, 4th Edition. The Williams & Wilkins Co., Baltimore

    Google Scholar 

  • Bergey DH, Breed RS, Murray EGD & Hitchens AP (1939) Bergey & #x2019;s Manual of Determinative Bacteriology, 5th Edition. The Williams & Wilkins Co., Baltimore.

    Google Scholar 

  • Bisset KA & Moore FW (1949) The relationship of certain branched bacterial genera. J. Gen. Microbiol. 3: 387–391

    Google Scholar 

  • Bisset KA & Moore FW (1950) Jensenia, a new genus of the Actinomycetales. J. Gen. Microbiol. 4: 280

    Google Scholar 

  • Blackall LL, Parlett JH, Hayward AC, Minnikin DE, Greenfield PF & Harbers AE (1989) Nocardia pinensis sp. nov, an actinomycete found in activated sludge foams in Australia. J. Gen. Microbiol. 135: 1547–1558

    Google Scholar 

  • Boiron P, Provost F & Dupont B (1993) Laboratory Methods for the Diagnosis of Nocardiosis. Institut Pasteur, Paris

    Google Scholar 

  • Bousfield IJ & Goodfellow M (1976) The & #x2018;rhodochrous & #x2019; complex and its relationships with allied taxa. In: Goodfellow M, Brownell JH & Serrano JA (Eds) The Biology of the Nocardiae (pp. 39–65). Academic Press, London

    Google Scholar 

  • Bradley SG (1971) Criteria for definition of Mycobacterium, Nocardia and the & #x2018;rhodochrous & #x2019; complex. Adv. Front. Pl. Sci. 28: 349–362

    Google Scholar 

  • Bradley SG (1973) Relationships among mycobacteria and nocardiae based on deoxyribonucleic acid reassociation. J. Bacteriol. 113: 645–651

    Google Scholar 

  • Bradley SG & Bond JS (1974) Taxonomic criteria for mycobacteria and nocardiae. Adv. Appl. Microbiol. 18: 131–190

    Google Scholar 

  • Breed RS, Murray EGD & Hitchens AP (Eds) (1948) Bergey & #x2019;s Manual of Determinative Bacteriology, 6th Edition. The Williams & Wilkins Co., Baltimore

    Google Scholar 

  • Briglia M, Rainey FA, Stackebrandt E, Schraa G & Salkinoja-Salonen MS (1996) Rhodococcus percolatus sp. nov., a bacterium degrading 2,4,6-trichlorophenol. Int. J. Syst. Bacteriol. 46: 23–30

    Google Scholar 

  • Buchanan RE (1918) Studies in the nomenclature and classification of the bacteria. VIII. The subgroups of the genera of the Actinomycetales. J. Bacteriol. 3: 403–406

    Google Scholar 

  • Buchanan RE (1925) General Systematic Bacteriology. Williams & Wilkins Co., Baltimore

    Google Scholar 

  • Bunch AW (1998) Biotransformation of nitriles by rhodococci. Antonie van Leeuwenhoek 74: 89–97.

    Google Scholar 

  • Cerbón J (1967) Taxonomic analysis of Nocardia. Rev. Lat. Am. Microbiol. Parasit. 9: 65–70

    Google Scholar 

  • Chun J & Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45: 240–245

    Google Scholar 

  • Chun J, Kang SO, Hah YC & Goodfellow M (1996) Phylogeny of mycolic acid-containing actinomycetes. J. Ind. Microbiol. 17: 205–213

    Google Scholar 

  • Chun, J, Blackall LL, Kang S-O, Hah YC & Goodfellow M (1997) A proposal to reclassify Nocardia pinensis Blackall et al., as Skermania piniformis gen. nov., comb. nov. Int. J. Syst. Bacteriol. 47: 127–131

    Google Scholar 

  • Collins MD (1994) Isoprenoid quinones. In: Goodfellow M & O & #x2019;Donnell AG (Eds) Chemical Methods in Prokaryotic Systematics (pp. 265–309). John Wiley & Sons, Chichester.

    Google Scholar 

  • Collins MD & Jones D (1982) Lipid composition of Corynebacterium paurometabolum (Steinhaus). FEMS Microbiol. Lett. 13: 13–16

    Google Scholar 

  • Collins MD, Pirouz T, Goodfellow M & Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J. Gen. Microbiol. 100: 221–230

    Google Scholar 

  • Collins MD, Goodfellow M, Minnikin DE & Alderson G (1985) Menaquinone composition of mycolic acid-containing actinomycetes and some sporoactinomycetes. J. Appl. Bacteriol. 58: 77–86

    Google Scholar 

  • Collins MD, Howarth OW, Grund E & Kroppenstedt RM (1987) Isolation and structural determination of new members of the vitamin K series in Nocardia brasiliensis. FEMSMicrobiol. Lett. 41: 35–39

    Google Scholar 

  • Collins MD, Smida J, Dorsch M & Stackebrandt E (1988a) Tsukamurella gen nov harboring Corynebacterium paurometabolum and Rhodococcus aurantiacus. Int. J. Syst. Bacteriol. 38: 385–391

    Google Scholar 

  • Collins MD, Burton RA & Jones D (1988b) Corynebacterium amycolatum sp. nov. a new mycolic acid-less Corynebacterium species from human skin. FEMS Microbiol. Lett. 49: 349–352

    Google Scholar 

  • Colquhoun JA, Mexson J, Goodfellow M, Ward AC, Horikoshi K & Bull AT (1998) Novel rhodococci and other mycolate actinomycetes from the deep sea. Antonie van Leeuwenhoek 74: 27–40

    Google Scholar 

  • Colwell RR (1970a) Polyphasic taxonomy in bacteria. In: Iizuka H & Hasegawa T (Eds) Culture Collections of Microorganisms (pp. 421–436). University of Tokyo, Tokyo

    Google Scholar 

  • Colwell RR (1970b) Polyphasic taxonomy of the genus Vibrio: Numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus and related Vibrio species. J. Bacteriol. 104: 410–433

    Google Scholar 

  • Cronquist A (1964) The old systematics. In: Leone A (Ed) Taxonomic Behaviour and Serology. Ronald Press, New York.

    Google Scholar 

  • Cross T & Goodfellow M (1973) Taxonomy and classification of the actinomycetes. In: Sykes G and Skinner FA (Eds) Actinomycetales: Characteristics and Practical Importance (pp. 11–112). Academic Press, London

    Google Scholar 

  • Cummins CS & Harris H (1958) Studies on the cell wall composition and taxonomy of Actinomycetales and related groups. J. Gen. Microbiol. 18: 173–189

    Google Scholar 

  • Dabbs ER (1998) Cloning of genes that have environmental and clinical importance for rhodococci and related bacteria. Antonie van Leeuwenhoek 74: 155–168

    Google Scholar 

  • Davenport RJ, Elliott JN, Curtis TP & Upton J (1998) In situ detection of rhodococci associated with activated sludge foam. Antonie van Leeuwenhoek 74: 41–48

    Google Scholar 

  • Denome SA, Olson ES & Young KD (1993) Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8. Appl. Environ. Microbiol. 59: 2837–2843

    Google Scholar 

  • Dobson G, Minnikin DE, Minnikin SM, Parlett JH, Goodfellow M, Ridell M & Magnusson M (1985) Systematic analysis of complex mycobacterial lipids. In: Goodfellow M & Minnikin DE (Eds) Chemical Methods in Bacterial Systematics (pp. 237–265). Academic Press, London

    Google Scholar 

  • Embley TM & Stackebrandt E (1994) The molecular phylogeny and systematics of the actinomycetes. Ann. Rev. Microbiol. 48: 257–289

    Google Scholar 

  • Embley TM & Wait R (1994) Structural lipids of eubacteria In: Goodfellow M & O'Donnell AG (Eds) Chemical Methods in Prokaryotic Systematics (pp. 121–161). John Wiley & Sons, Chichester

    Google Scholar 

  • Finnerty WR (1992) The biology and genetics of the genus Rhodococcus. Ann. Rev. Microbiol. 46: 193–218

    Google Scholar 

  • Fox GE, Wisotzkey JD & Jurtshuk P., Jr. (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42: 166–170

    Google Scholar 

  • Funke G, Stubbs S, Altwegg M, Carlotti A & Collins MD (1994) Turicella otitidis gen. nov., sp. nov., a coryneform bacterium isolated from patients with otitis media. Int. J. Syst. Bacteriol. 44: 270–273

    Google Scholar 

  • Goodfellow G (1971) Numerical taxonomy of some nocardioform bacteria. J. Gen. Microbiol. 69: 33–80

    Google Scholar 

  • Goodfellow M (1984) Reclassification of Corynebacterium fascians (Tilford) Dowson in the genus Rhodococcus, as Rhodococcus fascians comb. nov. Syst. Appl. Microbiol. 5: 225–229

    Google Scholar 

  • Goodfellow M (1989) Genus Rhodococcus Zopf 1891, 28AL. In: Williams ST, Sharpe ME & Holt JG (Eds) Bergey & #x2019;s Manual of Systematic Bacteriology, Volume 4 (pp. 2362–2371). Williams & Wilkins, Baltimore

    Google Scholar 

  • Goodfellow M (1996) Actinomycetes: Actinomyces, Actinomadura, Nocardia, Streptomyces and related genera. In: Collee JG, Fraser AG, Marmion BP & Simmons A (Eds) Mackie & McCartney Practical Medical Microbiology (pp. 343–359). Churchill Livingston, Edinburgh

    Google Scholar 

  • Goodfellow M & Alderson G (1977) The actinomycete-genus Rhodococcus: a home for the & #x2018;rhodochrous & #x2019; complex. J. Gen. Microbiol. 100: 99–122

    Google Scholar 

  • Goodfellow M & Magee JG (1997) Taxonomy of mycobacteria. In: Gangadharam PRJ & Jenkins PA (Eds) Mycobacteria. I. Basic Aspects. (pp. 1–71). International Thomson Publishing, New York

    Google Scholar 

  • Goodfellow M & Minnikin DE (1980) Definition of the genus Mycobacterium vis a vis other taxa. In: Kubica GP, Wayne LG & Good LS (Eds) 1954 to 1979: Twenty-five Years of Mycobacterial Taxonomy (pp. 115–130). U.S. Department of Health Education and Welfare, Center for Disease Control, Atlanta

    Google Scholar 

  • Goodfellow M & O & #x2019;Donnell AG (1993) Roots of bacterial systematics. In: Goodfellow M and O & #x2019;Donnell AG (Eds) Handbook of New Bacterial Systematics (pp. 3–54). Academic Press, London

    Google Scholar 

  • Goodfellow M & Orchard VA (1974) Antibiotic sensitivity of some nocardioform bacteria and its value as a criterion for taxonomy. J. Gen. Microbiol. 83: 375–387

    Google Scholar 

  • Goodfellow M, Fleming A & Sackin MJ (1972) Numerical classification of & #x2018;Mycobacterium & #x2019; rhodochrous and Runyon & #x2019;s group IV mycobacteria. Int. J. Syst. Bacteriol. 22: 81–96

    Google Scholar 

  • Goodfellow M, Lind A, Mordarska H, Pattyn S & Tsukamura M (1974) A co-operative numerical analysis of cultures considered to belong to the & #x2018;rhodochrous & #x2019; taxon. J. Gen. Microbiol. 85: 291–302

    Google Scholar 

  • Goodfellow M, Orlean PAB, Collins MD, Alshamaony L & Minnikin DE (1978) Chemical and numerical taxonomy as some strains received as Gordona aurantiaca. J. Gen. Microbiol. 109: 57–68

    Google Scholar 

  • Goodfellow M, Weaver CR & Minnikin DE (1982) Numerical classification of some rhodococci, corynebacteria and related organisms. J. Gen. Microbiol. 128: 731–745

    Google Scholar 

  • Goodfellow M, Thomas EG, Ward AC & James AL (1990) Classification and identification of rhodococci. Zbl. Bakt. Ser. A 274: 299–315

    Google Scholar 

  • Goodfellow M, Zakrzewska-Czerwinska J, Thomas EG, Mordarski M, Ward AC & James AL (1991) Polyphasic taxonomic study of the genera Gordona and Tsukamurella including the description of Tsukamurella wratislaviensis. Zbl. Bakt. Ser. A 275: 162–178

    Google Scholar 

  • Goodfellow M, Chun, J, Atalan E & Sanglier JJ (1994) In: Priest FG, Ramos-Cormenzana A & Tindall BJ (Eds) Bacterial Diversity and Systematics. Plenum Press, New York.

    Google Scholar 

  • Goodfellow M, Manfio GP & Chun J (1997) Towards a practical species concept for cultivable bacteria. In: Claridge MF, Dawah HA & Wilson MR (Eds) Species: The Units of Biodiversity (pp. 25–59). Chapman & Hall, London.

    Google Scholar 

  • Gordon RE (1966) Some strains in search of a genus—Corynebacterium, Mycobacterium, Nocardia or what? J. Gen. Microbiol. 43: 329–343

    Google Scholar 

  • Gordon RE (1967) The taxonomy of soil bacteria. In: Gray TRG & Parkinson D (Eds) The Ecology of Soil Bacteria (pp. 293–321). Liverpool University Press, Liverpool.

    Google Scholar 

  • Gordon RE & Mihm JM (1957) A comparative study of some strains received as nocardiae. J. Bacteriol. 73: 15–27

    Google Scholar 

  • Gordon RE & Mihm JM (1959) A comparison of four species of mycobacteria. J. Gen. Microbiol. 21: 736–748

    Google Scholar 

  • Gordon RE & Mihm JM (1961) The specific identity of Jensenia canicruria. Can. J. Microbiol. 7: 108–110

    Google Scholar 

  • Gordon RE & Smith MM (1953) Rapidly growing acid-fast bacteria. I. Species description of Mycobacterium phlei Lehmann and Neumann and Mycobacterium smegmatis (Trevisan) Lehmann and Neumann. J. Bacteriol. 66: 41–48

    Google Scholar 

  • Gordon RE & Smith MM (1955) Proposed group of characters for the separation of Streptomyces and Nocardia. J. Bacteriol. 69: 147–150

    Google Scholar 

  • Gordon, RE, Barnett DA, Handerhan, JE & Pang CH-N (1974) Nocardia coeliaca, Nocardia autotrophica and the nocardin strain. Int. J. Syst. Bacteriol. 24: 54–63

    Google Scholar 

  • Gray PHH (1928) The formation of indigotin from indol by soil bacteria. Proc. R. Soc. B 102: 263–280

    Google Scholar 

  • Gray PHH & Thornton HG (1928) Soil bacteria that decompose certain aromatic compounds. Zentbl. Bakt. Parasit Kde (Abt. II) 73: 74–96

    Google Scholar 

  • Grzeszik C, Lubbers M, Reh M & Schlegel HG (1997) Genes encoding the NAD-reducing hydrogenase of Rhodococcus opacus MR11. Microbiology 143: 1271–1286

    Google Scholar 

  • H & #x00E4;ggblom MM, Nohynek LJ, Palleroni J, Kronqvist K, Nurmiaho-Lassila EL, Salkinoja-Salonen MS, Klatte S & Kroppenstedt RM (1994) Transfer of polychlorophenol-degrading Rhodococcus chlorophenolicus (Apajalahti et al., 1996) to the genus Mycobacterium as Mycobacterium chlorophenolicum comb. nov. Int. J. Syst. Bacteriol. 44: 485–493

    Google Scholar 

  • Harrison FC (1929) The discoloration of halibut. Can. J. Res. 1: 214–239

    Google Scholar 

  • Hefferan M (1904) A comparative and experimental study of bacilli producing red pigment. Zentbl. Bakt. Parasit. Kde (Abt. II) 73: 74–96

    Google Scholar 

  • Helmke E & Weyland H (1984). Rhodococcus marinonascens sp. nov. an actinomycete from the sea. Int. J. Syst. Bacteriol. 34: 127–138

    Google Scholar 

  • Hillis DM, Allard W & Miyamoto MM (1993) Analysis of DNA sequence data: phylogenetic inference. Methods Enzymol. 224: 456–487

    Google Scholar 

  • Howarth OW, Grund E & Kroppenstedt RM (1986) Structural determination of a new naturally occurring cyclic vitamin K. Biochem. Biophys. Res. Comm. 140: 916–923

    Google Scholar 

  • Hughes, J, Armitage YC & Symes KC (1998) Application of the whole cell rhodococcal biocatalysts in acrylic polymer manufacture. Antonie van Leeuwenhoek 74: 107–118

    Google Scholar 

  • Hyman IS & Chaparas SD (1977) A comparative study of the & #x2018;rhodochrous & #x2019; complex and related taxa by delayed type skin reactions on guinea pigs and by polyacrylamide gel electrophoresis. J. Gen. Microbiol. 100: 363–371

    Google Scholar 

  • Jensen HL (1931) Contributions to our knowledge of the Actinomycetales. II. The definition and subdivision of the genus Actinomyces with a preliminary account of Australian soil actinomycetes. Proc. Linn. Soc. N.S.W. 56: 345–370

    Google Scholar 

  • Jensen HL (1952) The coryneform bacteria. Ann. Rev. Microbiol. 6: 77–90

    Google Scholar 

  • Jones D (1975) A numerical taxonomic study of coryneform and related bacteria. J. Gen. Microbiol. 87: 52–96

    Google Scholar 

  • Klatte S, Rainey FA & Kroppenstedt RM (1994a) Transfer of Rhodococcus aichiensis Tsukamura 1982 and Nocardia amarae Lechevalier and Lechevalier 1974 to the genus Gordona as Gordona aichiensis comb. nov. and Gordona amarae comb. nov. Int. J. Syst. Bacteriol. 44: 769–773

    Google Scholar 

  • Klatte S, Jahnke K-D, Kroppenstedt RM, Rainey F & Stackebrandt E (1994b) Rhodococcus luteus is a later subjective synonym of Rhodococcus fascians. Int. J. Syst. Bacteriol. 44: 627–630

    Google Scholar 

  • Klatte S, Kroppenstedt RM & Rainey FA (1994c) Rhodococcus opacus sp. nov., an unusual nutritionally versatile Rhodococcus species. System. Appl. Microbiol. 17: 355–360

    Google Scholar 

  • Kruse W (1896) Systematik der Streptothrickeen und Bakterien. In Fl & #x00FC;gge, C. (Ed.), Die Mikroorganismen, Vol. 2 (pp. 48–66). F.C.W. Vogel, Leipzig

    Google Scholar 

  • Kubica GP, Baess I, Gordon RE, Jenkins PA, Kwapinski JBG, Mc-Durmont C, Pattyn SR, Saito H, Silcox V, Stanford JL, Takeya K & Tsukamura M (1972) A cooperative numerical analysis of the rapidly growing mycobacteria. J. Gen. Microbiol. 73: 55–70

    Google Scholar 

  • Lang S & Philp JC (1998) Surface-active lipids in rhodococci. Antonie van Leeuwenhoek 74: 59–70

    Google Scholar 

  • Lasker BA, Brown JM & McNeil MM (1992) Identification and epidemiological typing of clinical and environmental isolates of the genus Rhodococcus with use of a digoxigenin-labelled rDNA gene probe. Clin. Infect. Dis. 15: 223–233

    Google Scholar 

  • Lechevalier MP & Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int. J. Syst. Bacteriol. 20: 435–443

    Google Scholar 

  • Lechevalier MP & Lechevalier H (1974) Nocardia amarae sp. nov., an actinomycete common in foaming activated sludge. Int. J. Syst. Bacteriol. 24: 278–288

    Google Scholar 

  • Lechevalier MP, DeBièvre C & Lechevalier H (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem. Syst. Ecol. 5: 249–260

    Google Scholar 

  • Locci R (1976) Developmental micromorphology of actinomycetes. In Arai, T. (Ed.) Actinomycetes: The Boundary Micro-organisms (pp. 249–297). University Park Press, Baltimore

    Google Scholar 

  • Locci R (1981) Micromorphology and development of actinomycetes. Zbl. Bakt. (Abt. I) Orig. Suppl. 11: 119–130

    Google Scholar 

  • Locci R & Sharples GP (1984) Micromorphology. In: Goodfellow M, Mordarski M & Williams ST (Eds.), The Biology of Actinomycetes (pp. 165–199). Academic Press, London

    Google Scholar 

  • Magnusson H (1923) Spezifische infektiose Pneumonie beim Fohlen. Ein neuer Eitererreger beim Pferd. Arch. wiss. prakt. Tierheilk. 50: 22–38

    Google Scholar 

  • Magnusson M (1962) Specificity of sensitins. III. Further studies on guinea pigs with sensitins of various species of Mycobacterium and Nocardia. Am. Rev. Resp. Dis. 86: 395–404

    Google Scholar 

  • McClung NM (1974) Family VI. Nocardiaceae Castellani and Chalmers 1919, 1040. In: Buchanan RE & Gibbons NE (Eds.) Bergey & #x2019;s Manual of Determinative Bacteriology, 8th edn. (pp. 726–746). Williams & Wilkins, Baltimore

    Google Scholar 

  • McNeil MM & Brown JM (1994) The medically important aerobic actinomycetes: epidemiology and microbiology. Clin.Microbiol. Rev. 7: 357–417

    Google Scholar 

  • Manion RE, Bradley SG, Zinneman HH & Hall WH (1964) Interrelationships among mycobacteria and nocardiae. J. Bacteriol. 87: 1056–1059

    Google Scholar 

  • Martinez-Murcia AJ, Benllock AJ & Collins MD (1992) Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequencing: Lack of congruence with results of DNA:DNA hybridization. Int. J. Syst. Bacteriol. 42: 412–421

    Google Scholar 

  • Metcalf G & Brown M (1957) Nitrogen fixation by new species of Nocardia. J. Gen. Microbiol. 17: 567–572

    Google Scholar 

  • Minnikin DE & Goodfellow M (1980) Lipid composition in the classification and identification of acid-fast bacteria. In: Goodfellow, M. & Board, R.G. (Eds.) Microbiological Classification and Identification (pp. 189–256). Academic Press, London

    Google Scholar 

  • Minnikin DE & Goodfellow M (1981) Lipids in the classification of actinomycetes. Zbl. Bakt. Suppl. 11: 99–109

    Google Scholar 

  • Minnikin DE, Alshamaony L & Goodfellow M (1975) Differentiation of Mycobacterium, Nocardia and related taxa by thin layer chromatographic analysis of whole-organism methanolysates. J. Gen. Microbiol. 88: 200–204

    Google Scholar 

  • Minnikin DE, Minnikin SM, Hutchinson IG, Goodfellow M & Grange JM (1984a) Mycolic acid patterns of representative strains of Mycobacterium fortuitum, Mycobacterium peregrinum and Mycobacterium smegmatis. J. Gen.Microbiol. 130: 363–367

    Google Scholar 

  • Minnikin DE, Minnikin SM, Parlett JH, Goodfellow M & Magnusson M (1984b) Mycolic acid patterns of some species of Mycobacterium. Arch. Microbiol. 139: 225–231

    Google Scholar 

  • Minnikin DE, Dobson G, Goodfellow M, Draper P & Magnusson M (1985) Quantitative comparison of the mycolic and fatty acid composition of Mycobacterium leprae and Mycobacterium gordonae. J. Gen. Microbiol. 131: 2013–2021

    Google Scholar 

  • Molisch H (1907) Die Purpurbakterien nach neueren Untersuchungen. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Mordarski M, Szyba K, Pulverer G & Goodfellow M (1976) Deoxyribonucleic acid reassociation in the classification of the & #x2018;rhodochrous & #x2019; complex and allied taxa. J. Gen. Microbiol. 94: 235–245

    Google Scholar 

  • Mordarski M, Goodfellow M, Szyba K, Pulverer G & Tkacz A (1977) Classification of the & #x2018;rhodochrous & #x2019; complex and allied taxa based upon deoxyribonucleic and reassociation. Int. J. Syst. Bacteriol. 27: 31–38

    Google Scholar 

  • Mordarski M, Goodfellow M, Tkacz A, Pulverer G & Schaal KP (1980a) Ribosomal ribonucleic acid similarities in the classification of Rhodococcus and related taxa. J. Gen. Microbiol. 118: 313–319

    Google Scholar 

  • Mordarski M, Goodfellow M, Szyba K, Tkacz A, Pulverer G & Schaal KP (1980b) Deoxyribonucleic acid reassociation in the classification of the genus Rhodococcus. Int. J. Syst. Bacteriol. 30: 521–527

    Google Scholar 

  • Morton A C, Baseggio N, Peters M A & Browning G F (1998) Diversity of isolates of Rhodococcus equi from Australian thoroughbred horse farms. Antonie van Leeuwenhoek 74: 21–25

    Google Scholar 

  • Nesterenko OA, Nogina TM, Kasumova SA, Kvasnikov EI & Batrakov SG (1982) Rhodococcus luteus nom. nov. and Rhodococcus maris nom. nov. Int. J. Syst. Bacteriol. 32: 1–14

    Google Scholar 

  • Ochi K (1992) Electrophoretic heterogeneity of ribosomal protein AT-L30 among actinomycete genera. Int. J. Syst. Bacteriol. 42: 144–150

    Google Scholar 

  • O'Donnell AG, Embley TM & Goodfellow M (1993) Future of bacterial systematics. In: Goodfellow M & O & #x2019;Donnell AG (Eds) Handbook of Bacterial Systematics (pp. 513–524). Academic Press, London

    Google Scholar 

  • #x00D8;rskov J (1923) Morphology of the Ray Fungi. Levin & Munksgaard, Copenhagen

    Google Scholar 

  • Overbeck A (1891) Zur Kenntnis der Fettfarbstoff—Production bei Spaltpilzen. Nov. Acta Leopold. 55: 399–416

    Google Scholar 

  • Pascual C, Lawson PA, Farrow JAE, Gimenez MN & Collins MD (1995) Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45: 724–728

    Google Scholar 

  • Phillips NC (1953) Characterization of the soil globiforme bacteria. Iowa St. Coll. J. Sci. 27: 240–241

    Google Scholar 

  • Pietkiewicz D, Andrzejewski J, Manowska W & Bogunowicz A (1974) Nocardia pellegrini. III. Versuch einer Phagentypisiering. Zentbl. Bakt. ParasitKde. (Abt. I) 231: 214–222

    Google Scholar 

  • Prescott JF (1991) Rhodococcus equi: an animal and human pathogen. Clin. Microbiol. Rev. 4: 20–34

    Google Scholar 

  • Rainey FA, Burghardt J, Kroppenstedt RM, Klatte S & Stackebrandt E (1995a) Phylogenetic analysis of the genera Rhodococcus and Nocardia and evidence for the evolutionary origins of the genus Nocardia from within the radiation of Rhodococcus species. Microbiology 141: 523–528

    Google Scholar 

  • Rainey FA, Klatte S, Kroppenstedt RM & Stackebrandt E (1995b) Dietzia, a new genus including Dietzia maris comb. nov., formerly Rhodococcus maris. Int. J. Syst. Bacteriol. 45: 32–36

    Google Scholar 

  • Rainey FA, Burghardt J, Kroppenstedt R, Klatte S & Stackebrandt E (1995c) Polyphasic evidence for the transfer of Rhodococcus roseus to Rhodococcus rhodochrous. Int. J. Syst. Bacteriol. 45: 101–103

    Google Scholar 

  • Ratledge C & Patel PV (1976) The isolation, properties and taxonomic relevance of lipid-soluble, iron-binding compounds (the nocobactins) from Nocardia. J. Gen. Microbiol. 93: 141–152

    Google Scholar 

  • Ridell M & Norlin M (1973) Serological study of Nocardia by using mycobacterial precipitation reference systems. J. Bacteriol. 113: 1–7

    Google Scholar 

  • Riegel P, Kamne-Fotso MV, De Briel D, Pr & #x00E9;vost G, Jehl F, Pi#x00E9;mont Y & Monteil H (1994) Rhodococcus chubuense Tsukamura 1982 is a later subjective synonym of Gordona sputi (Tsukamura 1978) Stackebrandt 1989 comb. nov. Int. J. Syst. Bacteriol. 44: 764–768

    Google Scholar 

  • Rogall T, Wolters T, Flohr T & B & #x00F6;ttger EC (1990) Towards a phylogeny and definition of species at the molecular level within the genus Mycobacterium. Int. J. Syst. Bacteriol. 40: 323–330

    Google Scholar 

  • Ruimy R, Boiron P, Boivin V & Christen R (1994) A phylogeny of the genus Nocardia deduced from the analysis of small-subunit ribosomal DNA sequences including transfer of Nocardia amarae to the genus Gordona as Gordona amarae comb. nov. FEMS Microbiol. Lett. 123: 261–268

    Google Scholar 

  • Ruimy R, Riegel P, Boiron P, Monteil H & Christen R (1995) Phylogeny of the genus Corynebacterium deduced from analyses of small-subunit ribosomal DNA sequences. Int. J. Syst. Bacteriol. 45: 740–746

    Google Scholar 

  • Runyon EH, Wayne LG & Kubica GP (1974) Family II. Mycobacteriaceae Chester 1897, 63. In: Buchanan RE & Gibbons NE (Eds.) Bergey & #x2019;s Manual of Determinative Bacteriology, 8th edn. (pp. 681–701). Williams & Wilkins, Baltimore

    Google Scholar 

  • Schleifer KH & Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407–477

    Google Scholar 

  • Schuppler M, Mertens F, Sch & #x00F6;n G & G & #x00F6;bel UB (1995) Molecular characterization of nocardioform actinomycetes in activated sludge by 16S rRNA analysis. Microbiology 141: 513–521

    Google Scholar 

  • Schuppler M, Wagner M, Sch & #x00F6;n G & G & #x00F6;bel UB (1998) In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-target oligonucleotide probes. Microbiology 144: 249–259

    Google Scholar 

  • Serrano JA, Tablante RV, de Serrano AA, de San Blas GC & Imaeda T (1972) Physiological, chemical and ultrastructural characteristics of Corynebacterium rubrum. J. Gen. Microbiol. 70: 339–349

    Google Scholar 

  • Skerman VBD, McGowan V & Sneath PHA (1980) Approved Lists of Bacterial Names. Int. J. Syst. Bacteriol. 30: 225–420

    Google Scholar 

  • Sneath PHA (1962) Construction of taxonomic groups. Symp. Soc. Gen. Microbiol. 12: 287–332

    Google Scholar 

  • S & #x00F6;hngen NL (1913) Benzin, Petroleum, Paraffin & #x00F6;l und Paraffin als Kohlenstoff —und Energiequelle f & #x00FC;r Mikroben. Zbl. Bakt (Abt. I) 37: 595–609

    Google Scholar 

  • Stackebrandt E & Goebel BM (1994) Taxonomic note: A place for DNA:DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 486–489

    Google Scholar 

  • Stackebrandt E, Smida J & Collins MD (1988) Evidence of phylogenetic heterogeneity within the genus Rhodococcus: Revival of the genus Gordona (Tsukamura). J. Gen. Appl. Microbiol. 34: 341–348

    Google Scholar 

  • Stackebrandt E, Rainey FA & Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int. J. Syst. Bacteriol. 47: 479–491

    Google Scholar 

  • Stahl DA & Urbance JW (1990) The division between fastand slow-growing species corresponds to natural relationships among the mycobacteria. J. Bacteriol. 172: 116–124

    Google Scholar 

  • Stange RR Jr, Jeffares D, Young C, Scott DB, Eason JR & Jameson PE (1996) PCR amplification of the fas-1 gene for the detection of virulent strains of Rhodococcus fascians. Pl. Path. 45: 407–417

    Google Scholar 

  • Steinhaus EA (1941) A study of the bacteria associated with thirty species of insects. J. Bacteriol. 42: 757–790

    Google Scholar 

  • Stoecker MA, Herwig RP & Staley JT (1994) Rhodococcus zopfii sp. nov., a toxicant-degrading bacterium. Int. J. Syst. Bacteriol. 44: 106–110

    Google Scholar 

  • Sutcliffe IC (1998) Cell envelope composition and organisation in the genus Rhodococcus. Antonie van Leeuwenhoek 74: 49–58

    Google Scholar 

  • Suzuki K, Goodfellow M & O & #x2019;Donnell AG (1993) Cell envelopes and classification. In: Goodfellow M & O & #x2019;Donnell AG (Eds) Handbook of New Bacterial Systematics (pp. 195–250). Academic Press, London

    Google Scholar 

  • Swoffold DL & Olsen GJ (1990) Phylogenetic reconstruction. In: Hillis D & Moritz C (Eds) Molecular Systematics (pp. 411–501). Sinauer Associates, Sunderland, USA

    Google Scholar 

  • Tacquet A, Plancot MT, Debruyne J, Devulder B, Joseph M & Losfeld J (1971) & #x00C9;tude preliminaires sur la classification num & #x00E9;rique des mycobact & #x00E9;ries et des nocardias. I. Relations taxonomique entre Mycobacterium rhodochrous, Mycobacterium pellegrino et les genres Mycobacterium et Nocardia. Ann. Inst. Pasteur, Paris 22: 121–135

    Google Scholar 

  • Tomioka N, Uchiyama H & Yagi O (1994) Cesium accumulation and growth characteristics of Rhodococcus erythropolis CS98 and Rhodococcus sp. strain CS402. Appl. Environ. Microbiol. 60: 2227–2231

    Google Scholar 

  • Tsukamura M (1969) Numerical taxonomy of the genus Nocardia. J. Gen. Microbiol. 56: 265–287

    Google Scholar 

  • Tsukamura M (1971) Proposal of a new genus, Gordona, for slightly acid-fast organisms occurring in sputa of patients with pulmonary disease and in soil. J. Gen. Microbiol. 68: 15–26

    Google Scholar 

  • Tsukamura M (1973) A taxonomic study of strains received as & #x2018;Mycobacterium & #x2019; rhodochrous. Description of Gordona rhodochroa (Zopf; Overbeck; Gordon & Mihm) Tsukamura comb. nov. Jap. J. Microbiol. 17: 189–197

    Google Scholar 

  • Tsukamura M (1974) A further numerical taxonomic study of the rhodochrous group. Jap. J. Microbiol. 18: 37–44

    Google Scholar 

  • Tsukamura M (1975) Numerical analysis of the relationship between the Mycobacterium rhodochrous group and Nocardia by use of hypothetical median organisms. Int. J. Syst. Bacteriol. 25: 329–335

    Google Scholar 

  • Tsukamura M (1978) Numerical classification of Rhodococcus (formerly Gordona) organisms recently isolated from sputa of patients: Description of Rhodococcus sputi Tsukamura sp. nov. Int. J. Syst. Bacteriol. 28: 169–181

    Google Scholar 

  • Tsukamura M (1982) Numerical analysis of the taxonomy of nocardiae and rhodococci. Division of Nocardia asteroides sensu stricto into two species and descriptions of Nocardia paratuberculosis sp. nov. Tsukamura (formerly the Kyoto-1 group of Tsukamura, Nocardia nova sp. nov. Tsukamura, Rhodococcus aichiensis sp. nov. Tsukamura, Rhodococcus chubuensis sp. nov. Tsukamura, and Rhodococcus obuensis sp. nov. Tsukamura. Microbiol. Immunol. 26: 1101–1119

    Google Scholar 

  • Tsukamura M & Mizuno S (1971) A new species Gordona aurantiaca occurring in sputa of patients with pulmonary disease. Kekkaku 46: 93–98

    Google Scholar 

  • Tsukamura M & Yano I (1985) Rhodococcus sputi sp. nov., nom. rev., and Rhodococcus aurantiacus sp. nov., nom. rev. Int. J. Syst. Bacteriol. 35: 364–368

    Google Scholar 

  • Tsukamura M, Mizuno S & Murata H (1975) Numerical taxonomy study of the taxonomic position of Nocardia rubra reclassified as Gordona lentifragmenta Tsukamura nom. nov. Int. J. Syst. Bacteriol. 25: 377–382

    Google Scholar 

  • Tsukamura M, Mizuno S, Tsukamura S & Tsukamura J (1979) Comprehensive numerical classification of 369 strains of Mycobacterium, Rhodococcus and Nocardia. Int. J. Syst. Bacteriol. 29: 110–129

    Google Scholar 

  • Tsukamura M, Yano I, Kudo T & Miyama A (1991) Rhodococcus roseus sp. nov., nom. rev. Int. J. Syst. Bacteriol. 41: 385–389

    Google Scholar 

  • Turfitt GE (1944) Microbiological agencies in the degradation of steroids. The cholesterol-decomposing organisms of soil. J. Bacteriol. 47: 487–493

    Google Scholar 

  • Uchida K & Aida K (1979) Taxonomic significance of cell wall acyl type in CorynebacteriumMycobacteriumNocardia group by a glycolate test. J. Gen. Appl. Microbiol. 25: 169–183

    Google Scholar 

  • Vandamme P, Pot B, Gillis P, De Vos P, Kersters K & Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60: 407–438

    Google Scholar 

  • Vantomme R, Elia S, Swings J & De Ley J (1982) Corynebacterium fascians (Tilford 1936) Dowson 1942, the causal agent of leafy gall on lily crops in Belgium. Parasitica 38: 183–192

    Google Scholar 

  • Waksman SA & Henrici AT (1943) The nomenclature and classification of the actinomycetes. J. Bacteriol. 46: 337–341

    Google Scholar 

  • Waksman SA & Henrici AT (1948) Family II. Actinomycetaceae Buchanan. In: Breed RS, Murray EGD & Hitchens AP (Eds.) Bergey & #x2019;s Manual of Determinative Bacteriology, 6th edn. (pp. 892–928). The Williams & Wilkins Co., Baltimore

    Google Scholar 

  • Warhurst AW & Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit. Rev. Biotechnol. 14: 29–73

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler P, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP & Tr & #x00FC;per HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463–464

    Google Scholar 

  • Wayne LG, Good RC, B & #x00F6;ttger EC, Butler R, Dorsch M, Ezaki T, Gross W, Jonas V, Kilburn J, Kirschner P, Krichevsky MI, Ridell M, Shinnick TM, Springer B, Stackebrandt E, Tarnok I, Tarnok Z, Tasaka H, Vincent V, Warren NG, Knott CA & Johnson R (1996) Semantide-and chemotaxonomy-based analysis of some problematic phenotypic clusters of slowly growing mycobacteria, a cooperative study of the International Working Group on Mycobacterial Taxonomy. Int. J. Syst. Bacteriol. 46: 280–297

    Google Scholar 

  • Williams ST, Sharples GP, Serrano JA, Serrano AA & Lacey J (1976) The micromorphology and fine structure of nocardioform organisms. In: Goodfellow M, Brownell JH & Serrano JA (Eds.) The Biology of the Nocardiae (pp. 102–140). Academic Press, London

    Google Scholar 

  • Winslow CEA & Rogers AF (1906) A statistical study of generic characters in the Coccaceae. J. Infect. Dis. 3: 485–546

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol. Rev. 51: 221–271

    Google Scholar 

  • Woese CR, Kandler O & Wheelis ML (1990) Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci., USA, 87: 4576–4579

    Google Scholar 

  • Yassin AF, Rainey FA, Brzezinka H, Burghardt J, Lee HJ & Schaal KP (1995) Tsukamurella inchonensis sp. nov. Int. J. Syst. Bacteriol. 45: 522–527

    Google Scholar 

  • Yassin AF, Rainey FA, Burghardt J, Brzezinka, Schmitt S, Seifert P, Zimmerman O, Mauch H, Gierth D, Lux I & Schaal KP (1997) Tsukamurella tyrosinosolvens sp. nov. Int. J. Syst. Bacteriol. 47: 607–614

    Google Scholar 

  • Zakrzewska-Czerwinska J, Mordarski M & Goodfellow M (1988) DNA base composition and homology values in the classification of some Rhodococcus species. J. Gen. Microbiol. 134: 2807–2813

    Google Scholar 

  • Zopf W (1891) Ueber Ausscheidung von Fettfarbstoffen (Lipochromen) seitens gewisser Spaltpilzes. Ber. Deut. bot. Gesell. 9: 22–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongsik Chun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodfellow, M., Alderson, G. & Chun, J. Rhodococcal systematics: problems and developments. Antonie Van Leeuwenhoek 74, 3–20 (1998). https://doi.org/10.1023/A:1001730725003

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001730725003

Navigation