Skip to main content
Log in

Radiation Exchange Between Stratus Clouds and Polar Marine Surfaces

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The radiative energy exchange between arctic sea-ice and stratiform clouds is studied by means of aircraft measurements and a two-stream radiation transfer model. The data have been obtained by flights of two identically instrumented aircraft during the Radiation and Eddy Flux Experiments REFLEX I in autumn 1991 and REFLEX II in winter 1993 over the arctic marginal ice zone of Fram Strait. The instrumental equipment comprised Eppley pyranometers and pyrgeometers, which measure the solar and terrestrial upwelling and downwelling hemispheric radiation flux densities, and a line-scan-camera on one aircraft to monitor the surface structure of the sea-ice. An empirical parametrization of the albedo of partly ice-covered ocean surfaces is obtained from the data, which describes the albedo increasing linearly with the concentration of the snow-covered sea-ice and with the cosine of the sun zenith angle at sun elevations below 10°. Cloud optical parameters, such as single scattering albedo, asymmetry factor and shortwave and longwave height-dependent extinction coefficient are determined by adjusting modeled radiation flux densities to observations. We found significant influence of the multiple reflection of shortwave radiation between the ice surface and the cloud base on the radiation regime. Consistent with the data, a radiation transfer model shows that stratus clouds of 400 m thickness with common cloud parameters may double the global radiation at the surface of sea-ice compared to open water values. The total cloud-surface-albedo under these circumstances is 30% larger over sea-ice than over water. Parametrizations of the global and reflected radiation above and below stratus clouds are proposed on the basis of the measurements and modeling. The upwelling and downwelling longwave emission of stratus clouds with thicknesses of more than 500 m can be satisfactorily estimated by Stefan's law with an emissivity of nearly 1 and when the maximum air temperature within the cloud is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, B., Poellot, M., and Cox, S. K.: 1974, 'Pyrgeometer Measurements from Aircraft', Rev. Sci. Instrum. 45, 33-38.

    Google Scholar 

  • Bannehr, L. and Schwiesow, R.: 1993, 'A Technique to Account for the Misalignment of Pyranometers Installed on Aircraft', J. Atmos. Oceanic Tech., Boston 10(5), 774-777.

    Google Scholar 

  • Bochert, A. and Wamser, C.: 1994, 'New Airborne Line Scanner Systems for High Resolution Sea Ice Observations', Global Atmos. and Ocean System 2, 247-251.

    Google Scholar 

  • Chandrasekhar, S.: 1989, Selected Papers: Volume 2, 'Radiative Transfer and Negative Ion of Hydrogen', The University of Chicago Press, 541 pp.

  • Curry, J. A. and Herman, G. F.: 1985, 'Infrared Radiative Properties of Summertime Arctic Stratus Clouds', J. Clim. Appl. Meteorol. 24, 525-538.

    Google Scholar 

  • Curry, J. A.: 1986, 'Interactions Among Turbulence, Radiation and Microphysics in Arctic Stratus Clouds', J. Atmos. Sci. 43, 90-106.

    Google Scholar 

  • Dehne, K., Bergholter, U., and Kasten, F.: 'IEA Comparison of Longwave Radiometers', DWD Meteorologisches Observatorium Hamburg, 72 pp.

  • Feigelson, E. M.: 1984, 'Radiation in a Cloudy Atmosphere', D. Reidel Publishing Company, 293 pp.

  • Finger, J. E. and Wendling, P.: 1990, 'Turbulence Structure of Arctic Stratus Clouds Derived from Measurements and Calculations', J. Atmos. Sci. 47, 1351-1373.

    Google Scholar 

  • Freese, D.: 1994, 'Emissions-und Extinktionseigenschaften niedriger Wolken in der arktischen Eisrandzone', Diploma Thesis, University of Bremen, 97 pp.

  • Gardiner, B. G.: 1987, 'Solar Radiation Transmitted to the Ground Through Clouds in Relation to the Surface Albedo', J. Geophys. Res. 92, 4010-4018.

    Google Scholar 

  • Hartmann, J., Kottmeier, Ch., and Wamser, C.: 1992, 'Radiation and Eddy Flux Experiment 1991 (REFLEX I)', Ber. Polarforsch. 105, 72 pp.

  • Hartmann, J., Kottmeier, C., Wamser, C., Augstein, E.: 1994, 'Aircraft Measured Atmospheric Momentum, Heat, and Radiation Fluxes Over Arctic Sea Ice', in: O. M. Johannessen, R. D. Muench, and J. E. Overland (eds.), 'The Polar Oceans and Their Role in Shaping the Global Environment', Geophys. Monogr. Ser. 85, AGU, Washington, 443-454.

    Google Scholar 

  • Hartmann, J., Bochert, A., Freese, D., Kottmejer, Ch., Nagel, D., and Reuter, A.: 1996, 'Radiation and Eddy Flux Experiment 1995 (REFLEX III)', Ber. Polarforsch. 218, 74 pp.

  • Hense, A., Kerschgens, M., and Raschke, E.: 1982, 'An Economical Method for Computing the Radiative Energy Transfer in Circulation Models', Quart. J. Roy. Meteorol. Soc. 108, 231-252.

    Google Scholar 

  • Herman, C. F. and Goody, R. M.: 1976, 'Formation and Persistence of Summertime Arctic Stratus Clouds', J. Atmos. Sci. 34, 1425-1432.

    Google Scholar 

  • Herman, G. F.: 1980, 'Thermal Radiation in Arctic Stratus Clouds', Quart. J. Roy. Meteorol. Soc. 106, 771-780.

    Google Scholar 

  • Herman, G. F., Curry, J. A.: 1984, 'Observational and Theoretical Studies of Solar Radiation in Arctic Clouds', J. Clim. Appl. Meteorol. 23, 5-24.

    Google Scholar 

  • Katsaros, K. B., McMurdie, L. A., Lind, R. J., and DeVault, J. E.: 1985, 'Albedo of a Water Surface, Spectral Variation, Effects of Atmospheric Transmittance, Sun Angle and Wind Speed', J. Geophys. Res. 90, 7313-7321.

    Google Scholar 

  • König-Langlo, G. and Augstein, E.: 1994, 'Parametrization of the Downward Longwave Radiation at the Earth's Surface in Polar Regions', Met. Zeitschrift, Neue Folge 6, 343-347.

    Google Scholar 

  • Kottmeier, Ch., Hartmann, J., Wamser, C., Cohrs, W., Lüpkes, C., Bochert, A., and Freese, D.: 1993, 'Radiation and Eddy Flux Experiment 1993 (REFLEX II)', Ber. Polarforsch. 133, 62 pp.

  • Kottmeier, Ch. (ed.): 1996, 'User Handbook for the POLAR 2 and POLAR 4 Research Aircraft', Alfred Wegener Institut für Polar-und Meeresforschung, 46 pp.

  • Latimer, J. R.: 1972, 'Radiation Measurement', in: J. MacDowall (ed.), 'International Field Year for the Great Lakes', Technical Manual Series No.2, Campbell Printing, Ottawa, 53 pp.

    Google Scholar 

  • Liou, K. N., Takano, Y.: 1994, 'Light Scattering by Nonspherical Particles: Remote Sensing and Climatic Implications', Atmos. Research 31, 271-298.

    Google Scholar 

  • Lüpkes, C. and Schlünzen, H.: 1996, 'Modeling the Arctic Convective Boundary Layer with Different Turbulence Parametrizations', Boundary-Layer Meteorol. 79, 107-130.

    Google Scholar 

  • Mai, S., Wamser, C., Kottmeier, Ch.: 1996, 'Geometric and Aerodynamic Roughness of Sea Ice', Boundary-Layer Meteorol. 77, 233-248.

    Google Scholar 

  • Payne, R. E.: 1972, 'Albedo of the Sea Surface', J. Atmos. Sci. 29, 959-969.

    Google Scholar 

  • Rockel, B., Raschke, E., Weyres, B.: 1991, 'A Parametrization of Broad Band Radiative Transfer Properties of Water, Ice and Mixed Clouds', Beitr. Phys. Atmosph. 64(1), 1-12.

    Google Scholar 

  • Shine, K. P.: 1984, 'Parametrization of the Shortwave Flux Over High Albedo Surfaces as a Function of Cloud Thickness and Surface Albedo', Quart. J. Roy. Meteorol. Soc. 110, 747-764.

    Google Scholar 

  • Shine, K. P. and Crane, R. G.: 1984, 'The Sensitivity of a One-dimensional Thermodynamic Sea Ice Model to Changes in Cloudiness', J. Geophys. Res. 88, 10615-10622.

    Google Scholar 

  • Stephens, G. L.: 1979, 'Optical Properties of EightWater Cloud Types'. CSIRO Aust. Div. Tech. Pap. 36, 35 pp.

  • Stuhlmann, R. and P. Bauer: 1991, 'Retrievals of Surface Radiation from Satellite Data and Aircraft Measurements Over Polar Regions', in: E. Raschke, H. Cattle, P. Lemke, and W. Rossow (eds.), 'World Climate Research Programme Sea-Ice and Climate', Report on Polar Radiation Fluxes and Sea-Ice Modeling, WCRP-62 WMO/TD-No.442, June 1991, pp. 29-40.

  • Tsay, S.-C., Stamnes, K., and Jayaweera, K.: 1989, 'Radiative Energy Balance in the Cloudy and Hazy Arctic', J. Atmos. Sci. 46, 1102-1118.

    Google Scholar 

  • Wendler, G., Eaton, F. D., and Ohtake, T.: 1981, 'Multiple Reflection Effects on Irradiance in the Presence of Arctic Stratus Clouds', J. Geophys. Res. 86, 2049-2057.

    Google Scholar 

  • Wiscombe, W. J.: 1975, 'Solar Radiation Calculations for Arctic Summer Stratus Conditions', Climate of the Arctic, Fairbanks, Alaska, pp. 245-254.

  • Zdunkowski, W., Welch, R. M., and Korb, G.: 1980, 'An Investigation of the Structure of Typical Two-Stream Methods for the Calculation of Solar Fluxes and Heating Rates in Clouds', Beitr. Phys. Atm. 53, 147-166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freese, D., Kottmeier, C. Radiation Exchange Between Stratus Clouds and Polar Marine Surfaces. Boundary-Layer Meteorology 87, 331–356 (1998). https://doi.org/10.1023/A:1000992701127

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000992701127

Navigation