Skip to main content
Log in

Prokaryotic diversity and the importance of culturing

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Modern approaches based on the use of molecular techniques presumed to circumvent the need for culturing prokaryotes, fail to provide sufficient and reliable information for estimation of prokaryote diversity. Many properties that make these organisms important members of the living world are amenable to observation only through the study of living cultures. Since current culture techniques do not always satisfy the need of providing a balanced picture of the microflora composition, future developments in the study of bacterial diversity should include improvements in the culture methods to approach as closely as possible the conditions of natural habitats. Molecular methods of microflora analysis have an important role as guides for the isolation and characterization of new prokaryotic taxa. Although the species concept is central to biodiversity studies, it is is extremely difficult to propose a definition applicable without constraints to all groups of living organisms. However, in prokaryote systematics much improvement has been achieved by comprehensive descriptions that include not only molecular data, but also the relevant aspects of the biology of the organisms under study (polyphasic approach).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amann R, Springer N, Ludwig W, Görtz H-D & Schleifer K-H (1991) Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature 351: 161–164

    Google Scholar 

  • Ash C, Farrow JAE, Walbanks S & Collins MD (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit-ribosomal RNA sequences. Lett. Appl. Microbiol. 13: 202–206

    Google Scholar 

  • Atlas RM & Bej AK (1990) Detecting bacterial pathogens in environmental water samples by using PCR and gene probes. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Ed) PCR Protocols. A Guide to Methods and Applications (pp 399–406)

  • Awramik SM, Schopf JW & Walter MR (1983) Filamentous fossil bacteria from the Archean of Western Australia. Precamb. Res. 20: 357–374

    Google Scholar 

  • Balows A, Trüper HG, Dworkin M, Harder W & Schleifer, K-H (Eds) (1991) The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. 2nd ed. Springer-Verlag, New York

    Google Scholar 

  • Barns SM, Fundyga RE, Jeffries MW & Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91: 1609–1613

    Google Scholar 

  • Bonner JT (1988) The Evolution of Complexity by Means of Natural Selection. Princeton University Press, Princeton

    Google Scholar 

  • Bos P & Theunissen B (Eds) (1995) Beijerinck and the Delft School of Microbiology. Delft University Press, Delft

    Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb J-F, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NSM, Weidman JF, Fuhrmann JL, Nguyen D, Utterback TR, Kelly JM, Peterson JD, Sadow PW, Hanna MC, Cotton MD, Roberts KM, Hurst MA, Kaine BP, Borodovsky M, Klenk H-P, Fraser CM, Smith HO, Woese CR & Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273: 1058–1073

    Google Scholar 

  • Burggraf S, Heyder P & Eis N (1997) A pivotal Archaeal group. Nature 385: 780

    Google Scholar 

  • Cairns J, Stent GS & Watson JD (1966) Phage and the Origins of Molecular Biology. Cold Spring Harbor Laboratory of Quantitative Biology, Cold Spring Harbor, New York

    Google Scholar 

  • Canfield DE & Teske A (1996) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382: 127–132

    Google Scholar 

  • Cary SC, Warren W, Anderson E & Giovannoni SJ (1993) Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Molec. Marine Biol. and Biotechnology 2: 51–62

    Google Scholar 

  • Cavalier-Smith T (1987) Eukaryotes with no mitochondria. Nature 326: 332–333

    Google Scholar 

  • Clarke PH & Drew R (1988) An experiment in enzyme evolution. Studies with Pseudomonas aeruginosa amidase. Biosc. Rep. 8: 103–120

    Google Scholar 

  • Colwell RR (1970) (1970) Polyphasic taxonomy of bacteria. In Iizuka H, Hasegawa T (Eds) Culture Collections of Microorganisms (pp 421–436). University of Tokyo Press, Tokyo

    Google Scholar 

  • Couch JN (1950) Actinoplanes a new genus of the Actinomycetales. J. Elisha Mitchell Sci. Soc. 66: 87–92

    Google Scholar 

  • DeLong EF, Wickham GS & Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243: 1360–1363

    Google Scholar 

  • Denamur E, Picard B, Decoux G, Denis J-B & Elion J (1993) The absence of correlation between allozyme and rrn RFLP analysis indicates a high gene flow rate within human clinical Pseudomonas aeruginosa isolates. FEMS Microbiol. Lett. 110: 275–280

    Google Scholar 

  • den Dooren de Jong LE (1926) Bijdrage tot de Kennis van het Mineralisatieproces. Nijgh & van Ditmar, Rotterdam

    Google Scholar 

  • Dijkhuizen L. (1996) Evolution of metabolic pathways. In Roberts MD, Sharp P, Alderson G & Collins M (Eds) Evolution of Microbial Life (pp 243–265). Cambridge University Press, Cambridge

    Google Scholar 

  • Dobell C. (1932) Antonie van Leeuwenhoek and His “Little Animals”. Stable Press, London

    Google Scholar 

  • Doolittle WF (1996) Some aspects of the biology of cells and their possible evolutionary significance. In Roberts DMcL, Sharp P, Alderson G & Collins M (Eds) Evolution of Microbial Life (pp 1–21). Cambridge University Press, Cambridge

    Google Scholar 

  • Doolittle RF, Feng D-F, Tsang S, Cho G & Little E (1996) Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271: 470–477

    Google Scholar 

  • Douglas SE, Murphy CA, Spencer DF & Gray MW (1991). Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Nature 350: 148–151

    Google Scholar 

  • Dykhuizen DE and Green L (1991) Recombination in Escherichia coli and the definition of biological species. J. Bacteriol. 173: 7257–7268

    Google Scholar 

  • DSMZ (1997) Deutsche Sammlung von Mikroorganismen und Zellkulturen (computer disk edition)

  • Ehrlich PR (1995) The scale of the human enterprise and biodiversity loss. In Lawton JH & May RM (Eds) Extinction Rates (pp 214–226) Oxford University Press, Oxford

    Google Scholar 

  • Eigen M (1992) Steps Towards Life: A Perspective of Evolution. Oxford University Press, Oxford

    Google Scholar 

  • Elton CS (1958) The Ecology of Invasion by Animals and Plants. Chapman and Hall, London

    Google Scholar 

  • Ferris JP, Hill Jr AR, Liu R & Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381: 59–61

    Google Scholar 

  • Festl H, Ludwig W & Schleifer K-H (1986) DNA hybridization probe for the Pseudomonas fluorescens group. Appl. Environm. Microbiol. 52: 1190–1194

    Google Scholar 

  • Finlay BJ, Esteban GF & Fenchel T (1996) Global diversity and body size (Scientific Correspondence). Nature 383: 132–133

    Google Scholar 

  • Forterre P (1997) Protein versus rRNA: Problems in rooting the universal tree of life. ASM News 63: 89–95

    Google Scholar 

  • Foster PL (1995) Adaptive mutation. In Baumberg S, Young JPW, Wellington EMH & Saunders JR (Eds) Population Genetics of Bacteria (pp 13–30) Cambridge University Press, Cambridge

    Google Scholar 

  • Fox GE, Wisotzkey JD & Jurtshuk P (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42: 166–170

    Google Scholar 

  • Francois LM (1986) Extensive deposition of banded iron formations was possible without photosynthesis. Nature 320: 352–354

    Google Scholar 

  • Fry NK, Saunders NA, Warwhick S & Embley TM (1991) The use of 16S ribosomal RNA analyses to investigate the phylogeny of the family Legionellaceae. J. Gen. Microbiol. 137: 1215–1222

    Google Scholar 

  • Goodfellow M & O'Donnell AG (Ed) (1993) Handbook of New Bacterial Systematics. Academic Press, London

    Google Scholar 

  • Grotzinger JP & Rothman DH (1996) An abiotic model for stromatolite morphogenesis. Nature 383: 423–425

    Google Scholar 

  • Guerrero R & Pedrós-Aliós C (Eds) (1993) Trends in Microbial Ecology. Spanish Society for Microbiology, Barcelona

    Google Scholar 

  • Gupta RS (1996) Protein phylogenies and the evolutionary relationships between prokaryotes and eukaryotes. In: Samson RA, Stalpers JA, van der Mei D, Stouthamer AH (Ed) Culture Collections to Improve the Quality of Life (pp 83–90) Centraalbureau voor Schimmelcultures, Baarn (The Netherlands)

    Google Scholar 

  • Gupta RS, Aitken K, Falah M & Singh B (1994) Cloning of Giardia lamblia heat shock protein HSP70 homologs: implications regarding origin of eukaryotic cells and of endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 91: 2895–2896

    Google Scholar 

  • Haldane JBS (1929) The origin of life. Rationalist Annual 148–169

  • Haldane JBS. (1985) The biology of inequality. In: Maynard Smith J (Ed) On Being the Right Size (pp 113–134) Oxford University Press, New York

    Google Scholar 

  • Heyword VH (executive editor) (1995) Global Biodiversity Assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Holland HD (1997) Evidence for life on Earth more than 3850 million years ago. Science 275: 38–39

    Google Scholar 

  • Holt JG (editor-in-chief) (1984–1989) Bergey's Manual of Systematic Bacteriology. Baltimore: Williams & Wilkins, Baltimore

    Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT & Williams ST (Eds) (1994) Bergey's Manual of Determinative Bacteriology, 9th edition. Williams & Wilkins, Baltimore

    Google Scholar 

  • Hopwood DA & Chater KF (Eds) (1989) Genetics of Bacterial Diversity. Academic Press, London

    Google Scholar 

  • Hugenholtz P & Pace NR (1996) Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends in Biotechnol. 14: 190–197

    Google Scholar 

  • Iwabe N, Kuma K, Hasegawa M, Osawa S & Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl. Acad. Sci. USA 86: 9355–9359

    Google Scholar 

  • Jacoby GA (1986) Resistance plasmids in Pseudomonas. In Sokatch JR (Ed) The Bacteria. A Treatise on Structure and Function. Volume X. The Biology of Pseudomonas (pp 265–293) Academic Press, Orlando

    Google Scholar 

  • Johnson JL & Palleroni (1989) Deoxyribonucleic acid similarities among Pseudomonas species. Int. J. Syst. Bacteriol. 39: 230–235

    Google Scholar 

  • Kaiser D & Losick R (1993) How and why bacteria talk to each other. Cell 73: 873–885

    Google Scholar 

  • Kareiva P (1996) Diversity and sustainability on the prairie. Nature 379: 673–674

    Google Scholar 

  • Kellert SR & Wilson EO (Ed) (1993) The Biophilia Hypothesis. Island Press, Washington, DC

    Google Scholar 

  • Kluyver AJ & van Niel CB (1956) The Microbe's Contribution to Biology. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Knoll A (1994) Life's expanding realm. Natural History 103: 14–20

    Google Scholar 

  • Knoll AH (1992) The early evolution of eukaryotes: a geological perspective. Science 256: 622–627

    Google Scholar 

  • Lake JA & Rivera MC (1996) The prokaryotic ancestry of eukaryotes. In Roberts MD, Sharp P, Alderson G & Collins M (Eds) Evolution of Microbial Life (pp 87–108). Cambridge University Press, Cambridge

    Google Scholar 

  • Lawton JH & May RM (Ed) (1995) Extinction Rates. Oxford University Press, Oxford

    Google Scholar 

  • Lenski RE (1993) Assessing the genetic structure of microbial populations. Proc. Natl. Acad. Sci. (USA) 90: 4334–4336

    Google Scholar 

  • Lenski RE (1995) Evolution in experimental populations of bacteria. In Baumberg S, Young JPW, Wellington EMH & Saunders JR (Eds) Population Genetics of Bacteria (pp 191–215) Cambridge University Press, Cambridge

    Google Scholar 

  • Lessie TG & Gaffney T (1986) Catabolic potential of Pseudomonas cepacia. In Sokatch JR (Ed) The Bacteria. A Treatise on Structure and Function. Vol X (pp 439–481) Academic Press, Orlando

    Google Scholar 

  • Lewontin RC (1985) Larger than life. Nature 314: 682–683

    Google Scholar 

  • Lipps JH (1993) Fossil Prokaryotes and Protists. Blackwell Scientific Publications, Boston

    Google Scholar 

  • McMenamin MAS. (1989) The emergence of animals. In Gould JL & Gould cg (Eds) Life at the Edge (pp 24–34) W.H. Freeman and Company, New York

    Google Scholar 

  • Martínez-Murcia AJ, Benlloch S & Collins MD (1992) Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridizations. Int. J. Syst. Bacteriol. 42: 412–421

    Google Scholar 

  • May RM (1978) The dinamics and diversity of insect faunas. In: Mound LA, Waloff N (Ed) Diversity of Insect Faunas (pp 188–204). Blackwell Scientific, New York

    Google Scholar 

  • May RM (1986) The search for patterns in the balance of nature: advances and retreats. Ecology 67: 1115–1126

    Google Scholar 

  • May RM (1992) How many species inhabit the Earth? Scientific American October: 42–48

  • May RM (1993) The end of biological history? Scientific American March: 146–149

  • May RM, Lawton JH & Stork NE (1995) Assessing extinction rates. In: Lawton JH & May RM (Eds) Extinction Rates (pp 1–24). Oxford University Press, Oxford

    Google Scholar 

  • Maynard Smith J, Dowson cg & Spratt BG (1991) Localized sex in bacteria. Nature 349: 29–31

    Google Scholar 

  • Maynard Smith J, Smith NH, O'Rourke M & Spratt BG (1993) How clonal are bacteria? Proc. Natl. Acad. Sci. USA 90: 4384–4388

    Google Scholar 

  • Maynard Smith J & Szathmáry E (1995) The Major Transitions in Evolution. W.H.Freeman and Company Limited, Oxford

    Google Scholar 

  • Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP & Friend CRL (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384: 55–59

    Google Scholar 

  • Mooers AØ & Redfield RJ (1996) Digging up the roots of life. Nature 379: 587–588

    Google Scholar 

  • Morell V (1996) Proteins ‘clock’ the origins of all creatures — great and small. Science 271: 448

    Google Scholar 

  • Morse DR, Lawton JH, Dodson MM & Williamson MH (1985) Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature 731–733

  • Mortlock RP (1992) The Evolution of Metabolic Function. CRC Press, Boca Ratón

    Google Scholar 

  • Mortlock RP & Gallo MA (1992) Experiments in evolution of catabolic pathways using modern bacteria. In Mortlock RP (Ed) The Evolution of Metabolic Function (pp 1–13) CRC Press, Boca Ratón

    Google Scholar 

  • Moyer CL, Dobbs FC & Karl DM (1994) Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environm. Microbiol. 60: 871–879

    Google Scholar 

  • Niklas KJ (1994) One giant step for life. Natural History 103: 22–25

    Google Scholar 

  • O'Donnell A, Embley TM, Goodfellow M (1993) Future of bacterial systematics. In: Goodfellow M & O'Donnell AG (Ed) Handbook of New Bacterial Systematics (pp 513–521). Academic Press, London

    Google Scholar 

  • Olsen GJ, Woese CR & Overbeek R (1994) The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176: 1–6

    Google Scholar 

  • Oparin AI (1924) Proiskhozhdenie Zhisny [The Origin of Life]. Moskovskiy Rabochiy, Moscow

    Google Scholar 

  • O'Rourke M & Stevens E (1993) Genetic structure of Neisseria gonorrhoeae populations: a non-clonal pathogen. J. Gen. Microbiol. 139: 2603–2611

    Google Scholar 

  • Pace NR (1996) New perspective on the natural microbial world: molecular microbial ecology. ASM News 62: 463–470

    Google Scholar 

  • Palleroni NJ (1984) Pseudomonas Migula. In Krieg NR & Holt JG (Eds) Bergey's Manual of Systematic Bacteriology, Vol 1 (pp 141–199) Williams & Wilkins, Baltimore

    Google Scholar 

  • Palleroni NJ (1991) Human-and animal-pathogenic pseudomonads. In Balows A, Trüper HG, Dworkin M, Harder W & Schleifer K-H (Eds) The Prokaryotes (pp3086–3103) Springer-Verlag, New York

    Google Scholar 

  • Palleroni NJ (1993) Pseudomonas classification. A new case history in the taxonomy of Gram-negative bacteria. Antonie van Leeuwenhoek 64: 231–251

    Google Scholar 

  • Palleroni NJ (1994) Some reflections on bacterial diversity. ASM News 60: 537–540

    Google Scholar 

  • Palleroni NJ (1995) Microbial versatility. In Young LY & Cerniglia CE (Eds) (1995) Microbial Transformation and Degradation of Toxic Organic Chemicals (pp 3–25) Wiley-Liss, New York

    Google Scholar 

  • Palleroni NJ, Kunisawa R, Contopoulou R & Doudoroff M (1973) Nucleic acid homologies in the genus Pseudomonas. Int. J. Syst. Bacteriol. 23: 333–339

    Google Scholar 

  • Palmer JD (1997) Organelle genomes: going, going, gone! Science 275: 790–791

    Google Scholar 

  • Pimm SL, Russell GJ, Gittleman JL & Brooks TM (1995) The future of biodiversity. Science 269: 347–350

    Google Scholar 

  • Postgate J (1992) Microbes and Man. 3rd ed. Cambridge University Press, Cambridge

    Google Scholar 

  • Postgate J (1994) The Outer Reaches of Life. Cambridge University Press, Cambridge

    Google Scholar 

  • Postgate J (1995) Breathless niches (book review) Nature 377: 26

    Google Scholar 

  • Priest FG, Ramos-Cormenzana A & Tindall BJ (Eds) (1994) Bacterial Diversity and Systematics. Plenum Press, New York

    Google Scholar 

  • Puhler G, Leffersy H, Gropp F, Palm P, Klenk HP, Lottspeich F, Garrett RA & Zillig W (1989) Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome. Proc. Natl. Acad. Sci. USA 86: 4569–4573

    Google Scholar 

  • Reaka-Kudla ML, Wilson DE & Wilson EO (1997) Biodiversity II. Understanding and Protecting our Biological Resources. Joseph Henry Press, Washington, DC

    Google Scholar 

  • Reichenbach H & Dworkin M (1991) The myxobacteria. In Balows A, Trüper HG, Dworkin M, Harder W & Schleifer K-H (Eds) The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. 2nd edition (pp 3416–3487) Springer-Verlag, New York

    Google Scholar 

  • Rivera MC & Lake JA (1992) Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257: 74–76

    Google Scholar 

  • Robertson LA (1996) The Delft School of Microbiology. A Look at the Family Tree. Delft University of Technology, Delft

    Google Scholar 

  • Sarukhán J (1997) Global issues (Book review) Science 275: 175

    Google Scholar 

  • Sayler GS, Hooper SW, Layton AC & King JMH (1990) Catabolic plasmids of environmental ane ecological significance (Mini Review) Microb. Ecol. 19: 1–20

    Google Scholar 

  • Schleifer KH, Ludwig W & Amann R (1993) Nucleic acid aprobes. In: Goodfellow M & O'Donnell AG (Eds) Handbook of New Bacterial Systematics (pp 463–510) Academic Press, London

    Google Scholar 

  • Schopf JW (1992) Major Events in the History of Life. Jones & Bartlett, Boston

    Google Scholar 

  • Schopf JW (1993) Microfossils of the early Archean apex chert: New evidence of the antiquity of life. Science 260: 640–646

    Google Scholar 

  • Schopf JW (1996) Are the oldest fossils cyanobacteria? In Roberts DMcL, Sharp P, Alderson G & Collins M (Eds) Evolution of Microbial Life (pp 23–61) Cambridge University Press, Cambridge

    Google Scholar 

  • Schopf JW, & Packer BM (1987) Early Archean (3.3 billion to 3.5 billion-year-old) microfossils from Warrawoona group, Australia. Science 237: 70–73

    Google Scholar 

  • Schroth MN, Hildebrand DC & Panopoulos N (1992) Phytopathogenic pseudomonads and related plant-associated pseudomonads. In Balows A, Trüper HG, Dworkin M, Harder W & Schleifer K-H (Eds) The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. 2nd edition (pp 3104–3131) Springer-Verlag, New York

    Google Scholar 

  • Selander RK, Li J, Boyd EF, Wang F-S & Nelson K (1994) DNA sequence analysis of the genetic structure of populations of Salmonella enterica and Escherichia coli. In Priest FG, Ramos-Cormenzana A & Tindall BJ (Eds) Bacterial Diversity and Systematics (pp 17–49) Plenum Press, New York

    Google Scholar 

  • Selander RK & Musser JM (1990) Population genetics and bacterial pathogenesis. In Iglewski BH & Clark VL (Eds) The Bacteria, Vol XI, Molecular Basis of Bacterial Pathogenesis (pp 11–36) Academic Press, San Diego

    Google Scholar 

  • Siemann E, Tilman D & Haarstad J (1996) Insect species diversity, abundance and body size relationships. Nature 380: 704–706

    Google Scholar 

  • Simpson GG (1961) Principles of Animal Taxonomy. Columbia University Press, New York

    Google Scholar 

  • Sneath PHA, Stevens M & Sackin MJ (1981) Numerical taxonomy of Pseudomonas based on published records of substrate utilization. Antonie van Leeuwenhoek 47: 423–448

    Google Scholar 

  • Sogin ML, Gunderson JH, Elwood HJ, Alonso RA & Peattie DA (1989) Phylogenetic significance of the Kingdom concept: an unusual eukaryotic 16S-like ribosomal RNA from Giardia lamblia. Science 243: 75–77

    Google Scholar 

  • Sogin ML, Silberman JD, Hinkle G & Morrison HG (1996) Problems with molecular diversity in Eukarya. In Roberts DMcL, Sharp P, Alderson G & Collins M (Eds) Evolution of Microbial Life (pp 167–184) Cambridge University Press, Cambridge

    Google Scholar 

  • Stackebrandt E & Goodfellow M (1991) Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons, Chichester

    Google Scholar 

  • Stackebrandt E & Woese CR (1984) The phylogeny of prokaryotes. Microbiol. Sci. 1: 117–122

    Google Scholar 

  • Stahl DA & Amann R (1991) Development and application of nucleic acid probes. In: Stackebrandt E & Goodfellow M (Eds) Nucleic Acid Techniques in Bacterial Systematics (pp 205–248). John Wiley & Sons, Chichester

    Google Scholar 

  • Stanier RY, Palleroni NJ & Doudoroff M (1966) The aerobic pseudomonads: A taxonomic study. J. Gen. Microbiol. 43: 159–271

    Google Scholar 

  • Steffan RJ & Atlas RM (1988) DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl. Environm. Microbiol. 54: 2185–2191

    Google Scholar 

  • Steffan RJ & Atlas RM (1991) Polymerase chain reaction: applications in environmental microbiology. Annu. Rev. Microbiol. 45: 137–161

    Google Scholar 

  • Stork NE (1997) Measuring global biodiversity and its decline. In Reaka-Kudla ML, Wilson DE & Wilson EO (Eds) Biodiversity II (pp 41–60) Joseph Henry Press, Washington, DC

    Google Scholar 

  • Thaxter R (1892) On the Myxobacteriaceae, a new order of Schizomycetes. Botanical Gazette 17: 389–406

    Google Scholar 

  • Tilman D & Downing JA (1994) Biodiversity and stability in grasslands. Nature 367: 363–365

    Google Scholar 

  • Tilman D, Wedin D & Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379: 718–720

    Google Scholar 

  • Tindall BJ (1994) Chemical analysis of Archaea and Bacteria: A critical evaluation of its use in taxonomy and identification. In Priest FG, Ramos-Cormenzana A & Tindall BJ (Eds) Bacterial Diversity and Systematics (pp 243–258) Plenum Press, New York

    Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL, Sorheim R, Michalsen J & Salte K (1993). Diversity of microbial communities determined by DNA reassociation technique. In: Guerrero R & Pedrós-Alió C (Eds) Trends in Microbial Ecology (pp 375–378). Spanish Society for Microbiology, Barcelona

    Google Scholar 

  • Vandamme P, Pot B, Gillis M, De Vos P, Kersters K & Swings J (1996) Polyphasic taxonomy: a consensus approach to bacterial systematics. Microbiol. Revs. 60: 407–438

    Google Scholar 

  • van de Peer Y, Neefs J-M, de Rijk P, de Vos P & de Wachter R (1994) About the order of divergence of the major bacterial taxa during evolution. System. Appl. Microbiol. 17: 32–38

    Google Scholar 

  • van Rossum D, Schuurmans FP, Gillis M, Muyotcha A, van Verseveld HW, Southamer AH & Boogerd FC (1995) Genetic and phenetic analyses of Bradyrhizobium strains nodulating peanut (Arachis hypogaea L.) roots. Appl. Environm. Microbiol. 61: 1599–1609

    Google Scholar 

  • von Kiedrowski G (1996) Primordial soup or crêpes? Nature 381: 20–21

    Google Scholar 

  • Wächtershäuser G (1988) Before enzymes and templates: Theory of surface metabolism. Microbiol. Revs. 4: 452–484

    Google Scholar 

  • Walter MR (1983) Archean stromatolites: evidence of the Earth earliest benthos. In: Schopf JW (Ed) Earth's Earliest Biosphere (pp 187–213). Princeton University Press, Princeton

    Google Scholar 

  • Walter MR, Buick R & Dunlop JSR (1980). Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284: 443–445

    Google Scholar 

  • Walter MR, Du R & Horodyski RJ (1990) Coiled carbonaceous megafossils from the Middle Proterozoic of Jixian (Tianjin) and Montana. Amer. J. Sci. 290A: 133–148

    Google Scholar 

  • Ward DM, Weller R & Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345: 63–65

    Google Scholar 

  • Ward DM, Weller R & Bateson (1990) 16S rRNA sequences reveal numerous uncultured organisms in a natural community. Nature 345: 63–65

    Google Scholar 

  • Wareing PF (1970) Diversity of flowering. Nature 225: 567

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP & Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Sys. Bacteriol. 37: 463–464

    Google Scholar 

  • Weller R & Ward DM, (1989) Selective recovery of 16S rRNA sequences from natural microbial communities in the form of cDNA. Appl. Environm. Microbiol. 7: 1818–1822

    Google Scholar 

  • Wellington EMH, Huddleston AS & Marsh P (1994) The use of molecular markers for the detection and typing of bacteria in soil. In Priest FG, Ramos-Cormenzana A & Tindall BJ (Eds) Bacterial Diversity and Systematics (pp 137–152) Plenum Press, New York

    Google Scholar 

  • Whittaker RH (1969) New concepts of kingdoms of organisms. Science 163: 150–160.

    Google Scholar 

  • Whittam TS (1995) Genetic population structure and pathogenicity in enteric bacteria. In Baumberg S, Young JPW, Wellington EMH & Saunders JR (Eds) Population Genetics of Bacteria (pp 217–245) Cambridge University Press, Cambridge

    Google Scholar 

  • Williams ST, Sharpe ME & Holt JG (Eds) (1989) Bergey's Manual of Systematic Bacteriology, Volume 4. Williams & Wilkins, Baltimore

    Google Scholar 

  • Wilson EO (Ed) (1984) Biophilia: The Human Bond with Other Species. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Wilson EO (Ed) (1988) Biodiversity. National Academy Press, Washington, DC

    Google Scholar 

  • Wilson EO (1992) The Diversity of Life. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Winogradsky S (1949) Microbiologie du Sol. Problèmes et méthodes. Cinquante Ans de Recherches. Masson et Cie, Paris

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Revs 2: 221–271

    Google Scholar 

  • Woese CR & Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74: 5088–5090

    Google Scholar 

  • Woese CR, Kandler O & Wheelis ML (1990) Towards a natural system of organisms: Proposal for the domains archaea, bacteria and eucarya. Proc. Natl. Acad. Sci. USA 87: 4576–4579

    Google Scholar 

  • Young LY & Cerniglia CE (Eds) (1995) Microbial Transformations and Degradation of Organic Chemicals. Wiley-Liss, New York

    Google Scholar 

  • Zuylen JV (1980) The microscopes of Antoni van Leeuwenhoek. Journal of Microscopy 121: 309–328

    Google Scholar 

  • Zylstra GJ & Gibson DT (1991) Aromatic hydrocarbon degradation: a molecular approach. In Setlow JK (Ed) Genetic Engineering (pp 183–203) Plenum Press, New York

    Google Scholar 

  • Zylstra GJ (1994) Molecular analysis of aromatic hydrocarbon degradation. In Garte SJ (Ed) Molecular Environmental Biology (pp 83–115) CRC Press, Boca Ratón

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palleroni, N.J. Prokaryotic diversity and the importance of culturing. Antonie Van Leeuwenhoek 72, 3–19 (1997). https://doi.org/10.1023/A:1000394109961

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000394109961

Keywords

Navigation