Skip to main content
Log in

Emerging principles of inorganic nitrogen metabolism in Paracoccus denitrificans and related bacteria

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The taxonomy of Paracoccus denitrificans and related bacteria is discussed. Evidence is given which shows that the physiological differences between P. denitrificans and Thiosphaera pantotropha are less fundamental than previously thought. A proposal to consider a species P. pantotropha is mentioned. The properties of the denitrifying enzymes and the genes involved in their formation in P. denitrificans is discussed. The synthesis of the membrane-bound nitrate reductase is regulated by FNR, that of the nitrite- and nitric oxide reductase by NNR. Evidence is given that FNR acts as a redox sensor rather than an oxygen sensor. The occurrence of aerobic denitrification and coupled heterotrophic nitrification-denitrification in the original strain of Thiosphaera pantotropha are explained by a limiting respiratory activity which activates FNR. Aerobic denitrification leads to a lower growth yield and an increase in µmax in batch culture when a limiting respiratory activity is assume d and when excess substrate is present. Coupled heterotrophic nitrification-denitrification gives a smaller increase in µmax and a more drastic reduction in yield. Both processes are thus advantageous to the organism. In a chemostat with limiting substrate these processes are disadvantageous. T. pantotropha has lost the ability for aerobic denitrification during extended cultivation. Possibly the substrate concentration was limiting during extended cultivation giving a selective advantage to variants which have lost these properties. The calculations predict that P. denitrificans should be able to grow chemolithotrophically with hydroxylamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arai H, Igarashi Y & Kodama T (1995) Expression of nir and nor genes for denitrification of Pseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator, DNR, in addition to ANR. FEBS Lett. 371: 73–76.

    Google Scholar 

  • Arts P, Robertson LA & Kuenen JG (1995) Nitrification and denitrification by Thiosphaera pantotropha in aerobic batch and chemostat cultures. FEMS Microbiol. Ecol., 18: 305–316.

    Google Scholar 

  • Beijerinck MW & Minkman DCJ (1910) Bildung und Verbrauch von Stikoxydul durch Bakterien. Zentralbl. Bakteriol. Parasitenk. Abt. II. 25: 30–63.

    Google Scholar 

  • Bergman DJ, Arciero DM & Hooper AB (1994) Organization of the hao gene cluster of Nitrosomonas europaea. Genes for two tetraheme c cytochromes. J. Bacteriol. 176: 3148–3153.

    Google Scholar 

  • Berks BC, Richardson DJ, Robinson C, Reilly A, Aplin RT & Ferguson SJ (1994) Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha. Eur. J. Biochem. 220: 117–124

    Google Scholar 

  • Berks BC, Page MD, Richardson DJ, Reilly A, Cavill A, Outen F & Ferguson SJ (1995a) Sequence analysis of subunits of the membrane-bound nitrate reductase from a denitrifying bacterium: the integral membrane subunit provides a prototype for the dihaem electron-carrying arm of a redox loop. Mol. Microbiol. 15: 319–331.

    Google Scholar 

  • Berks BC, Richardson DJ, Reilly A, Willis AC & Ferguson SJ (1995b). The nap EDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha. Biochem. J. 309: 983–992.

    Google Scholar 

  • Boogerd FC, van Verseveld HW, Torenvliet D, Braster M & Stouthamer AH (1984) Reconsideration of the efficiency of energy transduction in Paracoccus denitrificans during growth under a variety of culture conditions. A new approach for the calculation of P/2e−− ratios. Arch. Microbiol. 139: 344–350.

    Google Scholar 

  • Bosma G, Braster M, Stouthamer AH & van Verseveld HW (1987) Isolation and characterization of ubiquinol oxidase complexes from Paracoccus denitrificans cells cultured under various limiting conditions in the chemostat. Eur. J. Biochem. 165: 657–663.

    Google Scholar 

  • Carr GJ & Ferguson SJ (1990) The nitric oxide reductase of Paracoccus denitrificans. Biochem. J. 269: 423–429.

    Google Scholar 

  • Crossman L, Moir J, Wehrfritz JM, Keech A, Thomson A, Spiro S & Richardson D (1995) Heterotrophic nitrification in Paracoccus denitrificans. Proceedings Beijerinck Centennial Microbial Physiology and gene regulation: Emerging principles and applications pp. 44–45. Delft University Press, Delft, The Netherlands.

    Google Scholar 

  • de Boer APN, Reijnders WNM, Kuenen JG, Stouthamer AH & van Spanning RJM (1994) Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans. Ant. van Leeuwenhoek 66: 111–127.

    Google Scholar 

  • de Bruijn P, van de Graaf AA, Jetten MSM, Robertson LA & Kuenen JG (1995) Growth of Nitrosomonas europeae on hydroxylamine. FEMS Microbiol. Lett. 125: 179–184.

    Google Scholar 

  • de Gier JWL (1995) The terminal oxidases of Paracoccus denitrificans. Ph.D. Thesis, Vrije Universiteit, Amsterdam.

    Google Scholar 

  • Egert M, Hamann A, Kömen R & Friedrich CG (1993) Methanol and methylamine utilization result from mutational events in Thiosphaera pantotropha. Arch. Microbiol. 159: 364–371.

    Google Scholar 

  • Ferguson S (1994) Denitrification and its control. Ant. van Leeuwenhoek 66: 89–110.

    Google Scholar 

  • Fülop V, Moir JWB, Ferguson SJ & Hajdu J (1995) The anatomy of a bifunctional enzyme: structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd1. Cell 81: 369–377.

    Google Scholar 

  • Goodhew CF, Pettigrew GW, Devreese B, van Beumen J, van Spanning RJM, Baker SC, Saunders N & Ferguson SJ (1996) The cytochromes c-550 of Paracoccus denitrificans and Thiosphaera pantotropha — a need for re-evaluation of the history of Paracoccus cultures. FEMS Microbiol. Lett., submitted.

  • Harms N & van Spanning RJM (1991) C1 metabolism in Paracoccus denitrificans: Genetics of Paracoccus denitrificans. J. Bioenerg. Biomembr. 23: 187–210.

    Google Scholar 

  • Hooper AB & Terry KR (1973) Specific inhibitors of ammonia oxidation in Nitrosomonas. J. Bacteriol. 115: 480–485.

    Google Scholar 

  • Juliette LY, Hyman MR & Arp DJ (1995) Roles of bovine serum albumin and copper in the assay and stability of ammonia monooxygenase activity in vitro. J. Bacteriol. 177: 4908–4913.

    Google Scholar 

  • Jüngst A, Wakabayashi S, Matsubara H & Zumft WG (1991) The nir STBM region coding for cytochrome cd1-dependent nitrite respiration of Pseudomonas stutzeri consists of a cluster of monodi-and tetrameme proteins. FEBS Lett. 279: 205–209.

    Google Scholar 

  • Kamp AF, la Rivière JMW & Verhoeven W (1959) Albert Jan Kluyver: His Life and Work, pp. 483–502. North Holland Publishing Co., Amsterdam

    Google Scholar 

  • Katayama Y, Hiraishi A & Kuraishi H (1995) Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph and transfer of Thiobacillus versutus to the genes Paracoccus and Paracoccus versutus com. nov. with emendation of the genus. Microbiology 141: 1469–1477.

    Google Scholar 

  • Kelly DP (1989) Physiology and biochemistry of unicellular sulfur bacteria. In Schlegel HG & Bowien B (Eds.) Autotrophic bacteria, pp. 193–217. Science Tech Publishers, Madison (WI), USA.

    Google Scholar 

  • Kuenen JG & Robertson LA (1994) Combined nitrification-denitrification processes. FEMS Microbiol. Rev. 15: 109–117.

    Google Scholar 

  • Ludwig W, Mittenhuber G & Friedrich CG (1993) Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int. J. Syst. Bacteriol. 43: 363–367.

    Google Scholar 

  • Matchova I & Kucera I (1991) Evidence for the role of soluble cytochrome c in the dissimilatory reduction of nitrite and nitrous oxide by cells of Paracoccus denitrificans. Biochim. Biophys. Acta 1058: 256–260.

    Google Scholar 

  • McTavish H, La Quier F, Arciero D, Logan M, Mundfrom G, Fuchs JA & Hooper AB (1993) Multiple copies of genes coding for electron transport proteins in the bacterium Nitrosomonas europeae. J. Bacteriol. 175: 2445–2447.

    Google Scholar 

  • Moir JWB & Ferguson SJ (1993) Spontaneous mutation of Thiosphaera pantotropha enabling growth on methanol correlates with synthesis of a 26-kDa c-type cytochrome. FEMS Microbiol. Lett. 113: 321–326.

    Google Scholar 

  • Moir JWB & Ferguson SJ (1994) Properties of a Paracoccus denitrificans mutant deleted in cytochrome c (550) indicate that a copper protein can substitute for this cytochrome in electron transport to nitrite, nitric oxide and nitrous oxide. Microbiology-UK 140: 389–397.

    Google Scholar 

  • Moir JWB, Richardson DJ & Ferguson SJ (1995) The expression of redox proteins of denitrifications in Thiosphaera pantotropha grown with oxygen, nitrate and nitrous oxide as electron acceptors. Arch. Microbiol. 164: 43–49.

    Google Scholar 

  • Ohshima T, Sugiyama M, Uozumi N, Iijima S & Kobayashi T (1993) Cloning and sequencing of a gene encoding nitrite reductase from Paracoccus denitrificans and expression of the gene in Escherichia coli. J. Ferm. Bioeng. 76: 82–88.

    Google Scholar 

  • Prosser JI (1989) Autotrophic nitrification in bacteria. Adv. Microbiol. Physiol. 30: 125–181.

    Google Scholar 

  • Ras J, Hazelaar MJ, Robertson LA, Kuenen JG, Stouthamer AH & Harms N (1995) Methanol oxidation in a spontaneous mutant of Thiosphaera pantotropha with MeOH+ phenotype is catalyzed by a dye-linked ethanol dehydrogenase. FEMS Microbiol. Lett. 127: 159–164.

    Google Scholar 

  • Richardson DJ & Ferguson SJ (1992) The influence of carbon substrate on the activity of the periplasmic nitrate reductase in aerobically grown Thiosphaera pantotropha. Arch. Microbiol. 157: 535–537.

    Google Scholar 

  • Robertson LA & Kuenen JG (1984) Aerobic denitrification: a controversy revived. Arch. Microbiol. 139: 351–354.

    Google Scholar 

  • Robertson LA, van Niel EWJ, Torremans RAM & Kuenen JG (1988) Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl. Env. Microbiol. 54: 2812–2818.

    Google Scholar 

  • Robertson LA, Cornelisse R, Zheng R & Kuenen JG (1989). The effect of thiosulphate and other inhibitors of autotrophic nitrification on heterotrophic nitrifiers. Ant. van Leeuwenhoek 56: 301–309.

    Google Scholar 

  • Robertson LA & Kuenen JG (1990) Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotropha and other bacteria. Ant. van Leeuwenhoek 57: 139–152.

    Google Scholar 

  • Robertson LA, Dalsgaard T, Revsbach NP & Kuenen JG (1995) Confirmation of aerobic denitrification in batch cultures, using gas chromatography and 15N mass spectrometry. FEMS Microbiol. Eol., 18: 113–119.

    Google Scholar 

  • Saraste M & Castresana J (1994) Cytochrome oxidase evolved by tinkering with denitrification enzymes. FEBS Lett. 341: 1–4.

    Google Scholar 

  • Sears HJ, Ferguson SJ, Richardson DJ & Spiro S (1993) The identification of a periplasmic nitrate reductase in Paracoccus denitrificans. FEMS Microbiol. Lett. 113: 107–112.

    Google Scholar 

  • Silvestrini MC, Tordi MG, Musci G & Brunori M (1990) The reaction of Pseudomonas nitrite reductase and nitrite: a stopped flow and EPR study. J. Biol. Chem. 265: 11783–11787.

    Google Scholar 

  • Smith GB & Tiedje JM (1992) Isolation and characterization of a nitrite reductase gene and its use as a probe for denitrifying bacteria. Appl. Env. Microbiol. 58: 376–384.

    Google Scholar 

  • Spiro S (1994) The FNR family of transcriptional regulators. Ant. van Leeuwenhoek 66: 23–36.

    Google Scholar 

  • Stouthamer AH & Bettenhaussen CW (1980) Growth and physiology of potassium-limited chemostat cultures of Paracoccus denitrificans. Arch. Microbiol. 125: 239–244.

    Google Scholar 

  • Stouthamer AH & Bettenhaussen CW (1981) Influence of 2,4-dinitrophenol on the maximum specific growth rate and the respiration rate of Paracoccus denitrificans. FEMS Microbiol. Lett. 11: 83–87.

    Google Scholar 

  • Stouthamer AH (1991) Metabolic regulation including anaerobic metabolism in Paracoccus denitrificans. J. Bioenerg. Biomembr. 23: 163–186.

    Google Scholar 

  • Stouthamer AH (1992) Metabolic pathways in Paracoccus denitrificans and related bacteria in relation to the phylogeny of prokaryotes. Ant. van Leeuwenhoek 61: 1–33.

    Google Scholar 

  • Thomsen JK, Lønsmann Iversen JJ & Cox RP (1993) Interaction between respiration and denitrification during growth of Thiosphaera pantotropha in continuous culture. FEMS Microbiol. Lett. 110: 319–324.

    Google Scholar 

  • Unden G, Becker S, Bongaerts J, Schirawski J & Six S (1994) Oxygen regulated gene expression in facultatively anaerobic bacteria. Ant. van Leeuwenhoek 66: 3–22.

    Google Scholar 

  • Van der Oost, J, de Boer APN, de Gier JWL, Zumft WG, Stouthamer AH & van Spanning RJM (1994) The heme copper oxidase family consists of three disctinct types of terminal oxidases and is related to nitric oxide reductase. FEMS Microbiol. Lett. 121: 1–10.

    Google Scholar 

  • Van der Oost J, Schepper M, Stouthamer AH, Westerhoff HV, van Spanning RJM & de Gier JWL (1995) Reversed electron transfer through the bc 1 complex enables a cytochrome c oxidase mutant (Δaa3/cbb3) of Paracoccus denitrificans to grow on methylamine. FEBS Lett. 371: 267–270.

    Google Scholar 

  • van Spanning RJM, de Boer APN, Slotboom DJ, Reijnders WNM & Stouthamer AH (1995a) Isolation and characterization of a novel insertion sequence element, IS1248 in Paracoccus denitrificans. Plasmid 34: 11–21.

    Google Scholar 

  • van Spanning RJM, Reijnders WNM & Stouthamer AH (1995b) Integration of heterologous DNA into the genome of Paracoccus denitrificans is mediated by a family of IS1248-related elements and a second type of integrative recombination event. J. Bacteriol. 177: 4772–4778.

    Google Scholar 

  • van Spanning RJM, de Boer APN, Reijnders WNM, Spiro S, Westerhoff HV, Stouthamer AH & van der Oost J (1995c) Nitrite and nitric oxide reduction in Paracoccus denitrificans is under the control of NNR, a regulatory protein that belongs to the FNR family of transcriptional activators. FEBS Lett. 360: 151–154.

    Google Scholar 

  • Wehrfritz JM, Reilly A, Spiro S & Richardson DJ (1993) Purification of hydroxylamine oxidase from Thiosphaera pantotropha. Identification of electron acceptors that couple heterotrophic nitrification to aerobic denitrification. FEBS Lett. 335: 246–250.

    Google Scholar 

  • Wood PM (1986) Nitrification as a bacterial energy source. In: Prosser J (Ed) Nitrification (pp. 39–62) Special publications of the Society for General Microbiology, Vol. 20, IRL Press, Oxford.

    Google Scholar 

  • Zeilstra-Ryalls JH & Kaplan S (1995) Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1.: the role of the fnrL gene. J. Bacteriol. 177: 6422–6431.

    Google Scholar 

  • Zumft G, Gotzmann DJ, Frunzke K & Viebrock A (1987) Novel terminal oxidoreductases of anaerobic respiration (denitrification) from Pseudomonas. In: Inorganic nitrogen metabolism (Aparicio PJ, Castillo F, Syrett PJ & Castillo F (Eds.) pp 61–67, Springer Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stouthamer, A., de Boer, A., van der Oost, J. et al. Emerging principles of inorganic nitrogen metabolism in Paracoccus denitrificans and related bacteria. Antonie Van Leeuwenhoek 71, 33–41 (1997). https://doi.org/10.1023/A:1000113824961

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000113824961

Navigation