Skip to main content
Log in

Newtonian Cosmology in Lagrangian Formulation: Foundations and Perturbation Theory

General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The “Newtonian” theory of spatially unbounded, self-gravitating, pressureless continua in Lagrangian form is reconsidered. Following a review of the pertinent kinematics, we present alternative formulations of the Lagrangian evolution equations and establish conditions for the equivalence of the Lagrangian and Eulerian representations. We then distinguish open models based on Euclidean space R3 from closed models based (without loss of generality) on a flat torus T3. Using a simple averaging method we show that the spatially averaged variables of an inhomogeneous toroidal model form a spatially homogeneous “background” model and that the averages of open models, if they exist at all, in general do not obey the dynamical laws of homogeneous models. We then specialize to those inhomogeneous toroidal models whose (unique) backgrounds have a Hubble flow, and derive Lagrangian evolution equations which govern the (conformally rescaled) displacement of the inhomogeneous flow with respect to its homogeneous background. Finally, we set up an iteration scheme and prove that the resulting equations have unique solutions at any order for given initial data, while for open models there exist infinitely many different solutions for given data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. Barrow, J. D., Götz, G. (1989). Class. Quant. Grav. 6, 1253.

    Google Scholar 

  2. Barrow, J. D., Saich, P. (1993). Class. Quant. Grav. 10, 79.

    Google Scholar 

  3. Bertschinger, E. (1992). In Lecture Notes in Physics 408 (Springer-Verlag, Berlin), p.65.

  4. Bertschinger, E., Hamilton, A. J. S. (1994). Astrophys. J. 435, 1.

    Google Scholar 

  5. Bertschinger, E., Jain, B. (1994). Astrophys. J. 431, 486.

    Google Scholar 

  6. Bertschinger, E. (1996). In Cosmology and Large Scale Structure. Proc. Les Houches XV Summer School, R. Schaeffer, J. Silk, M. Spiro, J. Zinn-Justin, eds. (Elsevier Science Publishers B. V., Amsterdam), p.273–347.

    Google Scholar 

  7. Bildhauer, S., Buchert, T., Kasai, M. (1992). Astron. Astrophys. 263, 23.

    Google Scholar 

  8. Bouchet, F. R., Juszkiewicz, R., Colombi, S., Pellat, R. (1992). Astrophys. J. Lett. 394, L5.

    Google Scholar 

  9. Bouchet, F. R., Colombi, S., Hivon, E., Juszkiewicz, R. (1995). Astron. Astrophys. 296, 575.

    Google Scholar 

  10. Bouchet, F. R. (1996). In Proc. International School of Physics “Enrico Fermi,” CXXXII — Dark Matter in the Universe (Varenna 1995), S. Bonometto, J. Primack, A. Provenzale, eds. (IOP Press, Amsterdam), p.565–599.

    Google Scholar 

  11. Brauer, U. (1992). J. Math. Phys. 33, 1224.

    Google Scholar 

  12. Brauer, U., Rendall, A., Reula, O. (1994). Class. Quant. Grav. 11, 2283.

    Google Scholar 

  13. Bruni, M., Matarrese, S., Pantano, O. (1995). Astrophys. J. 445, 958.

    Google Scholar 

  14. Buchert, T., Götz, G. (1987). J. Math. Phys. 28, 2714.

    Google Scholar 

  15. Buchert, T. (1989). Astron. Astrophys. 223, 9.

    Google Scholar 

  16. Buchert, T. (1992). Mon. Not. R. Astr. Soc. 254, 729.

    Google Scholar 

  17. Buchert, T. (1993). Astron. Astrophys. 267, L51.

    Google Scholar 

  18. Buchert, T., Ehlers J. (1993). Mon. Not. R. Astr. Soc. 264, 375.

    Google Scholar 

  19. Buchert, T. (1994). Mon. Not. R. Astr. Soc. 267, 811.

    Google Scholar 

  20. Buchert, T., Melott A.L., Weiû A.G. (1994). Astron. Astrophys. 288, 349.

    Google Scholar 

  21. Buchert, T. (1996). In Proc. International School of Physics “Enrico Fermi,” CXXXII — Dark Matter in the Universe (Varenna 1995), S. Bonometto, J. Primack, A. Provenzale, eds. (IOP Press, Amsterdam), p.543–564.

    Google Scholar 

  22. Buchert, T. (1993). “Inhomogeneous Newtonian cosmogony.” Habilitationsschrift, LMU Munich.

  23. Buchert, T., Ehlers J. (1997). Astron. Astrophys. 320, 1.

    Google Scholar 

  24. Buchert, T., Karakatsanis, G., Klaffl, R., Schiller, P. (1997). Astron. Astrophys. 318, 1.

    Google Scholar 

  25. Cartan, E. (1923). Ann. Sci. Ec. Norm. Sup. 40, 325.

    Google Scholar 

  26. Cartan, E. (1924). Ann. Sci. Ec. Norm. Sup. 41, 1.

    Google Scholar 

  27. Catelan, P. (1995). Mon. Not. R. Astr. Soc. 276, 115.

    Google Scholar 

  28. Clarke, C. J. S., O'Donnell, N. (1992). Rend. Sem. Math. Univ. Pol. Torino 50, 39.

    Google Scholar 

  29. Coles, P., Melott, A. L., Shandarin, S. F. (1993). Mon. Not. R. Astr. Soc. 260, 765.

    Google Scholar 

  30. Croudace, K., Parry, J., Salopek, D., Stewart, J. (1994). Astrophys. J. 423, 22.

    Google Scholar 

  31. Dodziuk, J. (1979). Proc. Am. Math. Soc. 77, 395.

    Google Scholar 

  32. Ehlers, J. (1961). Akad. Wiss. Lit. Mainz, Abh. Math.-Nat. Klasse 11, p.793 (in German); translated (1993). Gen. Rel. Grav. 25, 1225.

    Google Scholar 

  33. Ehlers, J., Buchert, T. (1997). Preprint

  34. Ellis, G. F. R. (1971). In General Relativity and Cosmology, R. Sachs, ed. (Academic Press, New York).

    Google Scholar 

  35. Ellis, G. F. R., Dunsby, P. K. S. (1997). Astrophys. J., in press.

  36. Fourès-Bruhat, Y. (1958). Bull. Soc. Math. France 86, 155 (in French).

    Google Scholar 

  37. Gramann, M. (1993). Astrophys. J. 405, L47.

    Google Scholar 

  38. Gurevich, A. V., Zybin, K. P. (1995). Sov. Phys. Uspekhi 38, 687.

    Google Scholar 

  39. Heckmann, O. (1968). Theorien der Kosmologie (2nd. ed. Springer-Verlag, Berlin).

    Google Scholar 

  40. Heckmann, O., Schücking, E. (1955). Zeitschrift für Astrophysik 38, 95.

    Google Scholar 

  41. Heckmann, O., Schücking, E. (1956). Zeitschrift für Astrophysik 40, 81.

    Google Scholar 

  42. Heckmann, O., Schücking, E. (1959). Encyclopedia of Physics 53, 489, (Springer-Verlag, Berlin).

    Google Scholar 

  43. Kasai, M. (1992). Phys. Rev. D47, 3214.

    Google Scholar 

  44. Kasai, M. (1995). Phys. Rev. D52, 5605.

    Google Scholar 

  45. Kobayashi, S., Nomizu, K. (1963). Foundations of Differential Geometry (Inter-science, New York).

    Google Scholar 

  46. Kofman, L., Pogosyan, D. (1995). Astrophys. J. 442, 30.

    Google Scholar 

  47. Lachièze-Rey, M. (1993). Astrophys. J. 408, 403.

    Google Scholar 

  48. Lesame, W. M., Ellis, G. F. R., Dunsby, P. K. S. (1996). Phys. Rev. D53, 738.

    Google Scholar 

  49. Matarrese, S., Pantano, O., Saez, D. (1993). Phys. Rev. D47, 1311.

    Google Scholar 

  50. Matarrese, S., Pantano, O., Saez, D. (1994). Mon. Not. R. Astr. Soc. 271, 513.

    Google Scholar 

  51. Matarrese, S. (1996). In Proc. International School of Physics “Enrico Fermi,” CXXXII — Dark Matter in the Universe (Varenna 1995), S. Bonometto, J. Primack, A. Provenzale, eds. (IOP Press, Amsterdam), p.601–628.

    Google Scholar 

  52. Matarrese, S., Terranova, D. (1996). Mon. Not. R. Astr. Soc. 283, 400.

    Google Scholar 

  53. Melott, A. L., Pellmann, T. F., Shandarin, S. F. (1994). Mon. Not. R. Astr. Soc. 269, 626.

    Google Scholar 

  54. Melott, A. L., Buchert, T., Weiû, A. G. (1995). Astron. Astrophys. 294, 345.

    Google Scholar 

  55. Moutarde, F., Alimi, J.-M., Bouchet, F. R., Pellat, R., Ramani, A. (1991). Astrophys. J. 382, 377.

    Google Scholar 

  56. Munshi, D., Sahni, V., Starobinsky, A. A. (1994). Astrophys. J. 436, 517.

    Google Scholar 

  57. Peebles, P. J. E. (1980). The Large-scale Structure of the Universe (Princeton University Press, Princeton, NJ).

    Google Scholar 

  58. Peebles, P. J. E. (1993). Principles of Physical Cosmology (Princeton University Press, Princeton, NJ).

    Google Scholar 

  59. Raychaudhuri, A. (1955). Phys. Rev. 98, 1123.

    Google Scholar 

  60. Rueede, C., Straumann, N. (1997). Helv. Phys. Acta, in press.

  61. Russ, H., Morita, M., Kasai, M., Börner, G. (1996). Phys. Rev. D53, 6881.

    Google Scholar 

  62. Sahni, V., Coles, P. (1995). Phys. Rep. 262, 1.

    Google Scholar 

  63. Salopek, D. S., Stewart, J. M., Croudace, K. M. (1994). Mon. Not. R. Astr. Soc. 271, 1005.

    Google Scholar 

  64. Schutz, B. F. (1980). Geometrical Methods of Mathematical Physics (Cambridge University Press, Cambridge).

    Google Scholar 

  65. Serrin, J. (1959). In Encyclopedia of Physics VIII.1 (Springer-Verlag, Berlin).

    Google Scholar 

  66. Shandarin, S. F. (1980). Astrophysics 16, 439.

    Google Scholar 

  67. Silbergleit, A. (1995). J. Math. Phys. 36, 847.

    Google Scholar 

  68. Stuart, J. T., Tabor, M., eds. (1990). The Lagran gian Picture of Fluid Motion Phil. Trans. R. Soc. Lond. A 333, 261–400.

  69. Trautman, A. (1966). In Perspectives in Geometry and Relativity, B. Hoffmann, ed. (Indiana University Press, Bloomington), p. 413–425.

    Google Scholar 

  70. Trümper, M. (1965). J. Math. Phys. 6, 584.

    Google Scholar 

  71. Vanselow, M. (1995). Diploma Thesis, Ludwig-Maximilians-Universität München (in German).

  72. Warner, F. W. (1971). Foundations of Differentiable Manifolds and Lie Groups (Scott Foresman, Glenvier, III).

    Google Scholar 

  73. Weiû, A. G., Gottlöber, S., Buchert, T. (1996). Mon. Not. R. Astr. Soc. 278, 953.

    Google Scholar 

  74. Zel'dovich, Ya. B. (1970). Astron. Astrophys. 5, 84.

    Google Scholar 

  75. Zel'dovich, Ya. B. (1973). Astrophysics 6, 164.

    Google Scholar 

  76. Zentsova, A. S., Chernin, A. D. (1980). Astrophysics 16, 108.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehlers, J., Buchert, T. Newtonian Cosmology in Lagrangian Formulation: Foundations and Perturbation Theory. General Relativity and Gravitation 29, 733–764 (1997). https://doi.org/10.1023/A:1018885922682

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018885922682

Navigation