Skip to main content
Log in

Is Galaxy Dark Matter a Property of Spacetime?

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We describe the motion of a particle in acentral field in an expanding universe. Use is made ofa double expansion in 1/c and 1/τ, where c and τare the speed of light and the Hubble time. In thelowest approximation the rotational velocity is shownto satisfy v4 = 2/3 GMcH0, whereG is Newton's gravitational constant, M is the mass ofthe central body (galaxy), and H0 is theHubble constant. This formula satisfies observations of stars moving inspiral and elliptical galaxies, and is in accordancewith the familiar Tully–Fisher law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bertotte, B., and Plebanski, J. (1960). Annals of Physics, 11, 169.

    Google Scholar 

  • Carmeli, M. (1964a). Physics Letters, 9, 132.

    Google Scholar 

  • Carmeli, M. (1964b). Physics Letters, 11, 169.

    Google Scholar 

  • Carmeli, M. (1964c). Annals of Physics, 30, 168.

    Google Scholar 

  • Carmeli, M. (1965a). Physical Review, 138, B1003.

    Google Scholar 

  • Carmeli, M. (1965b). Nuovo Cimento, 70, 842.

    Google Scholar 

  • Carmeli, M. (1965c). Annals of Physics, 34, 465.

    Google Scholar 

  • Carmeli, M. (1965d). Annals of Physics, 35, 250.

    Google Scholar 

  • Carmeli, M. (1965e). Physical Review, 140, B1441.

    Google Scholar 

  • Carmeli, M. (1982). Classical Fields: General Relativity and Gauge Theory, New York, Wiley, Chapter 6.

    Google Scholar 

  • Carmeli, M. (1995a). Foundations of Physics, 25, 1029.

    Google Scholar 

  • Carmeli, M. (1995b). Communications in Theoretical Physics, 4, 109.

    Google Scholar 

  • Carmeli, M. (1995c). Communications in Theoretical Physics, 4, 233.

    Google Scholar 

  • Carmeli, M. (1996a). Foundations of Physics, 26, 413.

    Google Scholar 

  • Carmeli, M. (1996b). Communications in Theoretical Physics, 5, 101.

    Google Scholar 

  • Damour, T. (1983). In Gravitational Radiation, N. Deruelle and T. Piran, eds., North-Holland, Amsterdam, pp. 59-144.

    Google Scholar 

  • Einstein, E., and Grommer, J. (1927). Sitzungsberichte der Preussiche Akademie der Wissenschaften Physikalisch-Mathematische Klasse.

  • Einstein, A., and Infeld, L. (1949). Canadian Journal of Mathematics, 1, 209.

    Google Scholar 

  • Einstein, A., Infeld, L., and Hoffmann, B. (1938). Annals of Mathematics, 39, 65.

    Google Scholar 

  • Fock, V. (1957). Reviews of Modern Physics, 29, 325.

    Google Scholar 

  • Fock, V. (1959). The Theory of Space, Time and Gravitation, Pergamon Press, Oxford.

    Google Scholar 

  • Infeld, L. (1957). Reviews of Modern Physics, 29, 398.

    Google Scholar 

  • Infeld, L., and Plebanski, J. (1960). Motion and Relativity, Pergamon Press, Oxford.

    Google Scholar 

  • Infeld, L., and Schild, A. (1949). Reviews of Modern Physics, 21, 408.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmeli, M. Is Galaxy Dark Matter a Property of Spacetime?. International Journal of Theoretical Physics 37, 2621–2625 (1998). https://doi.org/10.1023/A:1026672604958

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026672604958

Keywords

Navigation