Skip to main content
Log in

Modeling Effective Interactions of Micellar Aggregates of Ionic Surfactants with the Gauss-Core Potential

Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Micellar aggregates of ionic surfactants are known to possess a rich variety of interesting thermodynamic as well as structural properties, which are essentially dominated by simple effective interactions between the aggregates. Because of their technological relevance enormous efforts have been invested to understand and characterize their interactions in solution with the goal of developing substances with novel material’s properties. On a theoretical level several approaches have been proposed to describe their effective interactions adequately, generally based on the DLVO theory. However, these approaches do not take into account aspects of stability of the aggregates and therefore fail in the description of several important characteristics, such as, e.g., the re-entrant behavior of the apparent molal heat capacity appearing with increasing density of the micelles. In this paper we study the effective interactions of these systems by investigating the suitability of the Gauss-core model, to reproduce the relevant thermodynamic properties. To this end, we discuss the Gauss-core model in comparison to the standard DLVO model and demonstrate its aptitude to reproduce the results from calorimetric experiments of the ionic surfactant sodium decanoate in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. S.J. Burkitt, R.H. Ottewill, J.B. Hayter and B.T. Ingram,Colloid Polym.Sci.265 (1987)619.

    Google Scholar 

  2. R.M. Clapperton, R.H. Ottewill, A.R. Rennie and B.T. Ingram,Colloid Polym.Sci.277 (1999) 15.

    Google Scholar 

  3. D.E. Discher and A. Eisenberg,Science 297 (2002)967.

    Google Scholar 

  4. S.M. Jones, K.E. Howell, J.R. Henley, H. Cao and M.A. McNiven,Science 279 (1998)573.

    Google Scholar 

  5. Y.-Y. Won, H.T. Davis and F.S. Bates,Science 283 (1999)960.

    Google Scholar 

  6. B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou and A. Libchaber,Science 298 (2002)1759.

    Google Scholar 

  7. R. De Lisi, G. Perron and J.E. Desnoyers,Can.J.Chem.58 (1980)959.

    Google Scholar 

  8. L.V. Dearden and E.M. Woolley,J.Phys.Chem.91 (1987)4123.

    Google Scholar 

  9. E.M. Woolley and T.E. Burch eld,J.Phys.Chem.88 (1984)2155.

    Google Scholar 

  10. K. Ballerat-Busserolles, C. Bizzo, L. Pezzini, K.Sullivan and E.M. Woolley,J.Chem.Thermo-dyn.30 (1998)971.

    Google Scholar 

  11. G.M. Musbally, G. Perron and J.E. Desnoyers,J.Colloid Interf.Sci.48 (1974)494.

    Google Scholar 

  12. P.Linse,J.Chem.Phys.110 (1999)3493.

  13. V. Vlachy, C.H. Marshall and A.D.J. Haymet,J.Am.Chem.Soc.111 (1989)4160.

    Google Scholar 

  14. P.Linse,J.Chem.Phys.93 (1990)1376.

  15. B.H ribar, Y.V. Kalyuzhnyi and V. Vlachy,Mol.Phys.87 (1996)1317.

    Google Scholar 

  16. B.Hribar and V.Vlachy,J.Phys.Chem.B 101 (1997)3457.

    Google Scholar 

  17. I.D 'Amico and H. Löwen,Physica A 237 (1997)25.

  18. E.Allahyarov, I.D 'Amico and H. Löwen,Phys.Rev.Lett.81 (1998)1334.

    Google Scholar 

  19. B. Hribar, H. Krienke, Y.V. Kalyuzhnyi and V. Vlachy,J.Mol.Liq.73-74 (1997)277.

    Google Scholar 

  20. V.Lobaskin and P.Linse,J.Chem.Phys.109 (1998)3530.

    Google Scholar 

  21. V.Lobaskin and P.Linse,J.Chem.Phys.111 (1999)4300.

    Google Scholar 

  22. V.Lobaskin and P.Linse,J.Mol.Liq.84 (2000)131.

    Google Scholar 

  23. V.Lobaskin, A.Lyubartsev and P.Linse,Phys.Rev.E 63 (2001)020401.

    Google Scholar 

  24. M.Dijkstra,Curr.Opin.Colloid Interf.Sci.6 (2001)372.

  25. B.V. Derjaguin and L.D. Landau,Acta Physicochim.URSS 14 (1941)633.

    Google Scholar 

  26. E.J. Verwey and J.T.G. Overbeek,Theory of the Stability of Lyophobic Colloids (Elsevier, Am-sterdam,1948).

    Google Scholar 

  27. R.Podgornik,J.Phys.Chem.95 (1991)5249.

  28. R.O. Rosenberg and D. Thirumalai,Phys.Rev.A 36 (1987)5690.

    Google Scholar 

  29. H.Yotsumoto and Y.Roe-Hoan,J.Colloid Interf.Sci.157 (1993)434.

    Google Scholar 

  30. A.K. Sood,Solid State Phys.45 (1991)1.

  31. M.Dijkstra and R.van Roij,J.Phys.:Condens.Matter 10 (1998)1219.

    Google Scholar 

  32. J.O 'M. Bockris and A.K.N. Reddy,Modern Electrochemistry,Vol.1 (Plenum Press, New York, 1970).

  33. A.A. Louis, P.G. Bolhuis, J.-P. Hansen and E.J. Meijer,Phys.Rev.Lett.85 (2000)2522.

    Google Scholar 

  34. A.A. Louis, P.G. Bolhuis and J.-P. Hansen,Phys.Rev.E 62 (2000)7961.

    Google Scholar 

  35. P.G. Bolhuis, A.A. Louis, J.-P. Hansen and E.J. Meijer,J.Chem.Phys.114 (2001)4296.

    Google Scholar 

  36. F.H. Stillinger and D.K. Stillinger,Physica A 244 (1997)358.

    Google Scholar 

  37. C.Madelmont and R.Perron,Colloid Polym.Sci.254 (1976)581.

    Google Scholar 

  38. R.G. Laughlin,The Aqueous Phase Behavior of Surfactants (Academic Press, London,1994).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan A. Baeurle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baeurle, S.A., Kroener, J. Modeling Effective Interactions of Micellar Aggregates of Ionic Surfactants with the Gauss-Core Potential. Journal of Mathematical Chemistry 36, 409–421 (2004). https://doi.org/10.1023/B:JOMC.0000044526.22457.bb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMC.0000044526.22457.bb

Navigation