Skip to main content
Log in

Modeling of enzyme–substrate complexes for the metalloproteases MMP-3, ADAM-9 and ADAM-10

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The matrix metalloproteases (MMPs) and the ADAMs (A Disintegrin And Metalloprotease domain) are proteolytic enzyme families containing a catalytic zinc ion, that are implicated in a variety of normal and pathological processes involving tissue remodeling and cancer. Synthetic MMP inhibitors have been designed for applications in pathological situations. However, a greater understanding of substrate binding and the catalytic mechanism is required so that more effective and selective inhibitors may be developed for both experimental and clinical purposes. By modeling a natural substrate spanning P4-P4′ in complex with the catalytic domains, we aim to compare substrate-specificities between Stromelysin-1 (MMP-3), ADAM-9 and ADAM–10, with the aid of molecular dynamics simulations. Our results show that the substrate retains a favourable antiparallel beta-sheet conformation on the P-side in addition to the well-known orientation of the P′-region of the scissile bond, and that the primary substrate selectivity is dominated by the sidechains in the S1′ pocket and the S2/S3 region. ADAM-9 has a hydrophobic residue as the central determinant in the S1′ pocket, while ADAM-10 has an amphiphilic residue, which suggests a different primary specificity. The S2/S3 pocket is largely hydrophobic in all three enzymes. Inspired by our molecular dynamics calculations and supported by a large body of literature, we propose a novel, hypothetical, catalytic mechanism where the Zn-ion polarizes the oxygens from the catalytic glutamate to form a nucleophile, leading to a tetrahedral oxyanion anhydride transition state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Basbaum, C.B. and Werb, Z., Curr. Opin. Cell. Biol. 8 (1996) 731.

    Google Scholar 

  2. Nagase, H., Matrix metalloproteinase. In: Hooper, N. (ed.), Zinc Metalloproteinases in Health and Disease. Taylor and Francis, London, 1996, pp. 153-204.

  3. Primakoff, P. and Myles, D.G., Trends Genet., 16 (2000) 83.

    Google Scholar 

  4. Millichip, M.I., Dallas, D.J., Wu, E., Dale, S. and McKie, N., Biochem. Biophys. Res. Commun., 245 (1998) 594.

    Google Scholar 

  5. Vincent, B., Paitel, E., Saftig, P., Frobert, Y., Hartmann, D., De Strooper, B., Grassi, J., Lopez-Perez, E. and Checler, F., J. Biol. Chem., 276 (2001) 37743.

    Google Scholar 

  6. Kiyama, R., Tamura, Y., Watanabe, F., Tsuzuki, H., Ohtani, M. and Yodo, M., J. Med. Chem., 42 (1999) 1723.

    Google Scholar 

  7. Rosendahl, M.S., Ko, S.C., Long, D.L., Brewer, M.T., Rosenzweig, B., Hedl, E., Anderson, L., Pyle, S.M., Moreland, J., Meyers, M.A., Kohno, T., Lyons, D. and Lichenstein, H.S., J. Biol. Chem., 272 (1997) 24588.

    Google Scholar 

  8. Roghani, M., Becherer, J.D., Moss, M.L., Atherton, R.E., Erdjument-Bromage, H., Arribas, J., Blackburn, R.K., Weskamp, G., Tempst, P. and Blobel, C.P., J. Biol. Chem., 274 (1999) 3531.

    Google Scholar 

  9. Springman, E.B., Angleton, E.L., Birkedal-Hansen, H. and Van Wart, H.E., Proc. Natl. Acad. Sci. USA, 87 (1990) 364.

    Google Scholar 

  10. Stocker, W., Grams, F., Baumann, U., Reinemer, P., Gomis-Rüth, F.X., McKay, D.B. and Bode, W., Protein Sci., 4 (1995) 823.

    Google Scholar 

  11. Reinemer, P., Grams, F., Huber, R., Kleine, T., Schnierer, S., Piper, M., Tschesche, H. and Bode, W., FEBS Lett., 338 (1994) 227.

    Google Scholar 

  12. Browner, M.F., Smith, W. and Castelhano, A.L., Biochemistry, 34 (1995) 6602.

    Google Scholar 

  13. Lovejoy, B., Cleasby, A., Hassell, A.M., Longley, K., Luther, M.A., Weigl, D., McGeehan, G., McElroy, A.B., Drewry, D., Lambert, M.H. and Jordan, S.R., Science, 263 (1994) 375.

    Google Scholar 

  14. Dhanaraj, V., Ye, Q.Z., Johnson, L.L., Hupe, D.J., Ortwine, D.F., Dunbar, J.B., Rubin, J.R., Pavlovsky, A., Humblet, C. and Blundell, T.L., Structure, 4 (1996a) 375.

    Google Scholar 

  15. Dhanaraj, V., Ye, Q.Z., Johnson, L.L., Hupe, D.J., Ortwine, D.F., Dunbar, J.B. Jr., Rubin, J.R., Pavlovsky, A., Humblet, C. and Blundell, T. L., Drug. Des. Discov., 13 (1996b) 3.

    Google Scholar 

  16. Murphy, G. and Docherty, J.P., Am. J. Res. Cell. Mol. Biol., 7 (1992) 120.

    Google Scholar 

  17. Amour, A., Slocombe, P.M., Webster, A., Butler, M., Knight, C.G., Smith, B.J., Stephens, P.E., Shelley, C., Hutton, M., Knauper, V., Docherty, A.J. and Murphy, G., FEBS Lett., 435 (1998) 39.

    Google Scholar 

  18. Amour, A., Knight, C.G., Webster, A., Slocombe, P.M., Stephens, P.E., Knauper, V., Docherty, A.J. and Murphy, G., FEBS Lett., 473 (2000) 275.

    Google Scholar 

  19. Heath, E.I. and Grochow, L.B., Drugs, 59 (2000) 1043.

    Google Scholar 

  20. Guex, N. and Peitsch, M.C., Electrophoresis, 18 (1997) 2714.

    Google Scholar 

  21. Gomis-Rüth, F.X., Maskos, K., Betz, M., Bergner, A., Huber, R., Suzuki, K., Yoshida, N., Nagase, H., Brew, K., Bourenkov, G.P., Bartunik, H. and Bode, W., Nature, 389 (1997) 77.

    Google Scholar 

  22. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E., Nucleic Acids Res., 28 (2000) 235.

    Google Scholar 

  23. Chen, L., Rydel, T.J., Dunaway, C.M., Pikul, S., Dunham, K.M., Gu, F. and Barnett, B.L., J. Mol. Biol., 293 (1999) 545.

    Google Scholar 

  24. Smith, M.M., Shi, L. and Navre, M., J. Biol. Chem., 270 (1995) 6440.

    Google Scholar 

  25. Weskamp, G., Kratzschmar, J., Reid, M.S. and Blobel, C.P., J. Cell. Biol., 132 (1996) 717.

    Google Scholar 

  26. Karplus, K., Barrett, C. and Hughey, R., Bioinformatics, 14 (1998) 846.

    Google Scholar 

  27. Johnson, L.L., Pavlovsky, A.G., Johnson, A.R., Janowicz, J.A., Man, C.F., Ortwine, D.F., Purchase II, C.F., White, A.D. and Hupe, D.J., J. Biol. Chem., 275 (2000) 11026.

    Google Scholar 

  28. Scott, W.R.P., Hünenberger, H.P., Tironi, I.G., Mark, A.E., Billeter, S.R., Fennen, J., Torda, A.E., Huber, T., Krüger, P. and Van Gunsteren, W.F., J. Phys. Chem., B 103 (1999) 3596.

    Google Scholar 

  29. Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F. and Hermans, J. In Pulman, B. (Ed.) Intermolecular Forces. D. Reidel Publishing Company, Dordrecht, 1981, pp. 331-342.

    Google Scholar 

  30. Lindahl, E., Hess, B. and Van der Spoel, D., J. Mol. Mod., 7 (2001) 306.

    Google Scholar 

  31. Hess, B., Bekker, H., Berendsen, H.J.C. and Fraaije, J.G.E.M., J. Comput. Chem., 18 (1997) 1463.

    Google Scholar 

  32. Miyamoto, S. and Kollman, P.A., J. Comput. Chem., 13 (1992) 952.

    Google Scholar 

  33. Jones, S.T., Ahlström, P., Berendsen, H.J.C. and Pickersgill, R.W., Biochim. Biophys. Acta, 1162 (1993) 135.

    Google Scholar 

  34. Berendsen, H.J.C., Postma, J.P.M., DiNola, A. and Haak, J.R., J. Chem. Phys., 81 (1984) 3684.

    Google Scholar 

  35. Darden, T.A., York, D.M. and Pedersen, L.G., J. Chem. Phys., 98 (1993) 10089.

    Google Scholar 

  36. Feierberg, I., Cameron, A.D. and Åqvist, J., FEBS Lett., 453 (1999) 90.

    Google Scholar 

  37. Gomis-Rüth, F.X., Kress, L.F. and Bode, W., EMBO J., 12 (1993) 4151.

    Google Scholar 

  38. Zhang, D., Botos, I., Gomis-Ruth, F.X., Doll, R., Blood, C., Njoroge, F.G., Fox, J.W., Bode, W. and Meyer, E.F., Proc. Natl. Acad. Sci. USA, 91 (1994) 8447.

    Google Scholar 

  39. Zhu, X., Teng, M. and Niu, L., Acta Cryst., D 55 (1999) 1834.

    Google Scholar 

  40. Maskos, K., Fernandez-Catalan, C., Huber, R., Bourenkov, G.P., Bartunik, H., Ellestad, G.A., Reddy, P., Wolfson, M.F., Rauch, C.T., Castner, B.J., Davis, R., Clarke, H.R., Petersen, M., Fitzner, J.N., Cerretti, D.P., March, C.J., Paxton, R.J., Black, R.A. and Bode, W., Proc. Natl. Acad. Sci. USA, 95 (1998) 3408.

    Google Scholar 

  41. Tyndall, J.D. and Fairlie, D.P., Curr. Med. Chem., 8 (2001) 893.

    Google Scholar 

  42. Glenn, M.P., Pattenden, L.K., Reid, R.C., Tyssen, D.P., Tyndall, J.D., Birch, C.J. and Fairlie, D.P., J. Med. Chem., 45 (2001) 371.

    Google Scholar 

  43. Gall, A.L., Ruff, M., Kannan, R., Cuniasse, P., Yiotakis, A., Dive, V., Rio, M.C., Basset, P. and Moras, D., J. Mol. Biol., 307 (2001) 577.

    Google Scholar 

  44. Alberts, I.L., Nadassy, K. and Wodak, S.J., Protein Sci., 7 (1998) 1700.

    Google Scholar 

  45. Perona, J.J. and Craik, C.S., Protein Sci., 4 (1995) 337.

    Google Scholar 

  46. Mustafi, D. and Makinen, M.W., J. Biol. Chem., 269 (1994) 4587.

    Google Scholar 

  47. Parkin, G., Met. Ions Biol. Syst., 38 (2001) 411.

    Google Scholar 

  48. Dhanaraj, V., Williams, M.G., Ye, Q.-Z., Molina, F., Johnson, L.L., Ortwine, D.F., Pavlovsky, A., Rubin, J.R., Skeean, R.W., White, A.D., Humblet, C., Hupe, D. and Blundell, T.L., Croatica Chem. Acta, 72 (1999) 575.

    Google Scholar 

  49. Seltzer, J.L., Weingarten, H., Akers, K.T., Eschbach, M.L., Grant, G.A. and Eisen, A.Z., J. Biol. Chem., 264 (1989) 19583.

    Google Scholar 

  50. Pavlovsky, A.G., Williams, M.G., Ye, Q.-Z., Ortwine, D.F., Purchase II, C.F., White, A.D., Dhanaraj, V., Roth, B.D., Johnson, L.L., Hupe, D., Humblet, C. and Blundell, T.L., Protein Sci., 7 (1999) 1455.

    Google Scholar 

  51. Borkakoti, N., Winkler, F.K., Williams, D.H., D'Arcy, A., Broadhurst, M.J., Brown, P.A., Johnson, W.H. and Murray, E.J., Nat. Struct. Biol., 1 (1994) 106.

    Google Scholar 

  52. Fersht, A., Enzyme Structure and Mechanism. W.H. Freeman and Company Ltd., San Francisco, USA, 1977, p. 27.

    Google Scholar 

  53. Mock, L., Zinc Proteinases. Comprehensive Biological Catalysis. Academic Press, USA, 1998. 431 pp.

    Google Scholar 

  54. Koshland, D.E. Jr., Carraway, K.W., Dafforn, G.A., Gass, J.D. and Storm, D.R., Cold Spring Harbor Symp. Quant. Biol., 36 (1972) 13.

    Google Scholar 

  55. Chothia, C., Wodak, S. and Janin, J., Proc. Natl. Acad. Sci. USA, 73 (1976) 3793.

    Google Scholar 

  56. Van der Spoel, D., Vogel, H.J. and Berendsen, H.J.C., Protein. Struct. Funct. Genet., 24 (1996) 450.

    Google Scholar 

  57. Kabsch, W. and Sander, C., Biopolymers, 22 (1983) 2577.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manzetti, S., McCulloch, D.R., Herington, A.C. et al. Modeling of enzyme–substrate complexes for the metalloproteases MMP-3, ADAM-9 and ADAM-10. J Comput Aided Mol Des 17, 551–565 (2003). https://doi.org/10.1023/B:JCAM.0000005765.13637.38

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCAM.0000005765.13637.38

Navigation