Skip to main content
Log in

HESX1 and Septo-Optic Dysplasia

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Beddington RSP, Robertson EJ. Axis development and early asymmetry in mammals. Cell 1999;96:195–209.

    Google Scholar 

  2. Dattani MT, Martinez-Barbera JP, Thomas PQ, Brickman JM, Gupta R, Martensson I, Toresson H, Fox M, Wales JKH, Hindmarsh PC, Krauss S, Beddington RSP, Robinson ICAF. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat Genet 1998;19:125–133.

    Google Scholar 

  3. Shawlot W, Behringer RR. Requirement for Lim1 in head organizer function. Nature 1995;374:425–430.

    Google Scholar 

  4. Ang SL, Jin O, Rhinn M, Daigle N, Stevenson L, Rossant J. A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 1996;122:243–252.

    Google Scholar 

  5. Rubenstein JLR, Shimamura K, Martinez S, Puelles L. Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 1998;21:445–477.

    Google Scholar 

  6. Couly G, LeDouarin NM. The fate map of the cephalic neural primordium at the presomitic to the 3-somite stage in the avian embryo. Development 1988;103(Suppl.):101–113.

    Google Scholar 

  7. Eagleson GW, Harris WA. Mapping of the presumptive brain regions in the neural plate of Xenopus laevis. J Neurobiol 1990;21:427–440.

    Google Scholar 

  8. Jacobsen AG, Miyamoto DM, Mai SH. Rathke's pouch morphogenesis in the chick embryo. J Expt Zoology 1979;207:351–366.

    Google Scholar 

  9. Dasen JS, Rosenfeld MG. Signaling mechanisms in pituitary morphogenesis and cell fate determination. Curr Opin Cell Biol 1999;11:669–677.

    Google Scholar 

  10. Kimura S, Hara Y, Pineau T, Fernandez-Salguero P, Fox CH, Ward JM, Gonzalez FJ. The T/ebp null mouse: Thyroid-specific enhancerbinding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 1996;10:60–69.

    Google Scholar 

  11. Treier M, Gleiberman AS, O'Connell SM, Szeto DP, McMahon JA, McMahon AP, Rosenfeld MG. Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev 1998;12:1691–1704.

    Google Scholar 

  12. Takuma N, Sheng HZ, Furuta Y, Ward JM, Sharma K, Hogan BLM, Pfaff SL, Westphal H, Kimura S, Mahon KA. Formation of Rathke's pouch requires dual induction from the diencephalon. Development 1998;125:4835–4840.

    Google Scholar 

  13. Oliver G, Wehr R, Jenkins NA, Copeland NG, Cheyette BN, Hartenstein V, Zipursky SL, Gruss P. Homeobox genes and connective tissue patterning. Development 1995;12:693–705.

    Google Scholar 

  14. Walther C, Gruss P. Pax6, a murine paired box gene, is expressed in the developing CNS. Development 1991;113:1435–1449.

    Google Scholar 

  15. Thomas PQ, Johnson BV, Rathjen J, Rathjen PD. Sequence, genomic organization, and expression of the novel homeobox gene Hesx1. J Biol Chem 1995;270:3869–3875.

    Google Scholar 

  16. Hermesz E, Mackem S, Mahon KA. Rpx:Anovel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke's pouch of the mouse embryo. Development 1996;122:41–52.

    Google Scholar 

  17. Zhadanov AB, Bertuzzi S, Taira M, Dawid IB, Westphal H. Expression pattern of the murine LIM class homeobox gene Lhx3 in subsets of neural and neuroendocrine tissues. Dev Dynamics 1995;202:354–364.

    Google Scholar 

  18. Bach I, Rhodes SJ, Pearse RV, Heinzel T, Gloss B, Scully KM, Sawchenko PE, Rosenfeld MG. P-Lim, a LIM homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit1. Proc Natl Acad Sci USA 1995;92:2720–2724.

    Google Scholar 

  19. Sheng HZ, Moriyama K, Yamashita T, Li H, Potter SS, Mahon KA, Westphal H. Multistep control of pituitary organogenesis. Science 1997;278:1809–1812.

    Google Scholar 

  20. Sheng HZ, Zhadanov AB, Mosinger B Jr, Fujii T, Bertuzzi S, Grinberg A, Lee EJ, Huang SP, Mahon KA, Westphal H. Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science 1996;272:1004–1007.

    Google Scholar 

  21. Lamonerie T, Tremblay JJ, Lanctot C, Therrien Y, Gauthier Y, Drouin J. Ptx1, a bicoid-related homeobox transcription factor involved in transcription of the propiomelanocortin gene. Genes Dev 1996;10:1284–1295.

    Google Scholar 

  22. Szeto DP, Ryan AK, O'Connell SM, Rosenfeld MG. P-OTX: A Pit1 interacting homeodomain factor expressed during anterior pituitary gland development. Proc Natl Acad Sci USA 1996;93:7706–7710.

    Google Scholar 

  23. Simmons DM, Voss JW, Ingraham HA, Holloway JM, Broide RS, Rosenfeld MG, Swanson LW. Pituitary cell phenotypes involve cellspecific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes Dev 1990;4:695–711.

    Google Scholar 

  24. Japon MA, Rubinstein M, Low MJ. In situ hybridization analysis of anterior pituitary hormone gene expression during HESX1 and SOD 299 fetal mouse development. J Histochem Cytochem 1994;42:1117–1125.

    Google Scholar 

  25. Ingraham HA, Lala DS, Ikeda Y, Luo X, Shen WH, Nachtigal MW, Abbud R, Nilson JH, Parker KL. The nuclear receptor steroidogenic factor-1 acts at multiple levels of the reproductive axis. Genes Dev 1994;8:2302–2312.

    Google Scholar 

  26. Li S, Crenshaw EBI, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG. Dwarf locus mutants which lack three pituitary cell types result from mutations in the POU domain gene Pit1. Nature 1990;347:528–533.

    Google Scholar 

  27. Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O'Connell SM, Gukovsky I, Carriere C, Ryan AK, Miller AP, Zuo L, Gleiberman AS, Andersen B, Beamer WG, Rosenfeld MG. Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 1996;384:327–333.

    Google Scholar 

  28. Wu W, Cogan JD, Pfaffle RW, Dasen JS, Frisch H, O'Connell MG, Flynn SE, Brown MR, Mullis PE, Parks JS, Phillips JA III, Rosenfeld MG. Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nat Genet 1998;18:147–149.

    Google Scholar 

  29. Artman HG, Boyden E. Microphthalmia with a single central incisor and hypopituitarism. J Med Genet 1990;27:192–193.

    Google Scholar 

  30. Brook CGD, Sanders MD, Hoare RD. Septo-optic dysplasia. BMJ 1972;3:811–813.

    Google Scholar 

  31. Coulter CL, Leech RW, Swchaefer GB, Scheithauer BW, Brumback RA. Midline cerebral dysgenesis, dysfunction of the hypothalamopituitary axis and fetal alcohol effects. Arch Neurol 1993;50:771–775.

    Google Scholar 

  32. Fitz CR. Holoprosencephaly and septo-optic dysplasia. Neuroimaging Clin N Am 1994;4:263–281.

    Google Scholar 

  33. Lee J, Nunn J, Wright C. Height and weight achievement in cleft lip and palate. Arch Dis Child 1997;76:70–72.

    Google Scholar 

  34. Rudman D, Davis GT, Priest JH, Patterson JH, Kutner MH, Heymsfield SB, Bethel RA. Prevalence of growth hormone defi-ciency in children with cleft lip or palate. J Pediatr 93:378–382.

  35. Reeves DL. Congenital absence of septum pellucidum. Bull Johns Hopkins Hosp 1941;69:61–71.

    Google Scholar 

  36. de Morsier G. Etudes sur les dysraphies cranio-encephaliques: III. Agenesie du septum lucidum avec malformation du tractus optique: La dysplasie septo-optique. Schweizer Arch Neurol Psychiatr 1956;77:267–292.

    Google Scholar 

  37. Hoyt WF, Kaplan SL, Grumbach MM, Glaser JS. Septo-optic dysplasia and pituitary dwarfism. Lancet 1970;1:893–894.

    Google Scholar 

  38. Arslanian SA. Hormonal, metabolic and neuroradiologic abnormalities associated with septo-optic dysplasia. Acta Endocrinol 1984;107:282–288.

    Google Scholar 

  39. Izenberg N, Rosenblum M, Parks JS. The endocrine spectrum of septo-optic dysplasia. Clin Pediatr 1984;23:632–636.

    Google Scholar 

  40. Roessman U. Septo-optic dysplasia (SOD) or DeMorsier syndrome. J Clin Neuro-ophthalmol 1989;9:156–159.

    Google Scholar 

  41. Stanhope R, Preece MA, Brook CGD. Hypoplastic optic nerves and pituitary dysfunction. A spectrum of anatomical and endocrine abnormalities. Arch Dis Child 1984;59:111–114.

    Google Scholar 

  42. Brodsky MC, Glasier CM. Optic nerve hypoplasia: Clinical significance of associated central nervous system abnormalities on magnetic resonance imaging. Arch Ophthalmol 1993;111:66–73.

    Google Scholar 

  43. Zeki SM, Hollman AS, Dutton GN. Neuroradiological features of patients with optic nerve hypoplasia. J Pediatr Ophthalmol Strabismus 1992;29:107–111.

    Google Scholar 

  44. Willnow S, Kiess W, Butenandt O, Dorr HG, Enders A, Strasser-Vogel B, Egger J, Schwarz HP. Endocrine disorders in septo-optic dysplasia (De Morsier syndrome)-Evaluation and follow up of 18 patients. Eur J Pediatr 1996;155:179–184.

    Google Scholar 

  45. Morishima A, Aranoff GS. Syndrome of septo-optic pituitary dysplasia: The clinical spectrum. Brain Dev 1986;8:233–239.

    Google Scholar 

  46. Acers TE. Optic nerve hypoplasia: Septo-optic-pituitary dysplasia syndrome. Trans Am Opthalmol Soc 1981;79:425–427.

    Google Scholar 

  47. Huseman CA, Kelch RP, Hopwood NJ, Zipf WB. Sexual precocity in association with septo-optic dysplasia and hypothalamic hypopituitarism. J Pediatr 1978;92(5):748–753.

    Google Scholar 

  48. Hanna CE, Mandel SH, LaFranchi SH. Puberty in the syndrome of septo-optic dysplasia. Am J Dis Child 1989;143:186–189.

    Google Scholar 

  49. Lam KSL, Wang C, Ma JT, Leung SP, Yeung RT. Hypothalamic defects in two adult patients with septo-optic dysplasia. Acta Endocrinol 1986;112:305–309.

    Google Scholar 

  50. Yukizane S, KimuraY, YamashitaY, MatsuishiT, Horikawa H, Ando H, Yamashita F. Growth hormone deficiency of hypothalamic origin in septo-optic dysplasia. Eur J Paediatr 1990;150:30–33.

    Google Scholar 

  51. Roesmann U, Velasco ME, Small EJ, Hori A. Neuropathology of “septo-optic dysplasia” (de Morsier syndrome) with immunohistochemical studies of the hypothalamus and pituitary gland. J Neuropathol Exp Neurol 1987;64:597–608.

    Google Scholar 

  52. Masera N, Grant DB, Stanhope RG, Preece MA. Diabetes insipidus with impaired osmotic regulation in septo-optic dysplasia and agenesis of the corpus callosum. Arch Dis Child 1994;70:51–53.

    Google Scholar 

  53. Cameron FJ, Khadilkar V, Stanhope R. Pituitary dysfunction, morbidity and mortality with congenital midline malformation of the cerebrum. Eur J Pediatr 1999;158:97–102.

    Google Scholar 

  54. Costin G, Murphree AL. Hypothalamic-pituitary function in children with optic nerve hypoplasia. Am J Dis Child 1985;139:249–254.

    Google Scholar 

  55. Nanduri VR, Stanhope R. Why is the retention of gonadotrophin secretion common in children with panhypopituitarism due to septooptic dysplasia? Eur J Endocrinol 1999;140:48–50.

    Google Scholar 

  56. Freude S, Frisch H, Wimberger D, Schober E, Hausler E, Waldhauser F, Aichner F. Septo-optic dysplasia and growth hormone deficiency: Accelerated pubertal maturation during GH therapy. Acta Paediatr 1992;81:641–645.

    Google Scholar 

  57. Roberts-Harry J, Green SH, Willshaw HE. Optic nerve hypoplasia: Associations and management. Arch Dis Child 1990;65:103–106.

    Google Scholar 

  58. Zaias B, Becker D. Septo-optic dysplasia: Developmental or acquired abnormality? A case-report. Trans Am Neurol Assoc 1978;103:273–277.

    Google Scholar 

  59. Wales JKH, Quarrell OWJ. Evidence for possible Mendelian inheritance of septo-optic dysplasia. Acta Pediatr 1996;85:391–392.

    Google Scholar 

  60. Blethen SL, Weldon VV. Hypopituitarism and septo-optic dysplasia in first cousins. Am J Med Genet 1985;21:123–129.

    Google Scholar 

  61. Benner JD, Preslan MW, Gratz E, Joslyn J, Schwartz M, Kelman S. Septo-optic dysplasia in two siblings. Am J Ophthalmol 1990;109:632–637.

    Google Scholar 

  62. Thomas P, Beddington RSP. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol 1996;6:1487–1496.

    Google Scholar 

  63. Thomas P, Brickman J, Popperl H, Krumlauf R, Beddington RSP. Axis duplication and anterior identity in the mouse embryo. In Symposia on Quantitative Biology, vol. LXII, Cold Spring Harbour Laboratory Press, 1997; 115–125.

  64. Kappen C, Schughart K, Ruddle FH. Early evolutionary origin of major homeodomain sequence classes. Genomics 1993;18:54–70.

    Google Scholar 

  65. Pfaffle RW, DiMattia GE, Parks JS, Brown MR, Wit JM, Jansen M, Van der Nat H, Van den Brande JL, Rosenfeld MG, Ingraham HA. Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science 1992;257:1118–1121.

    Google Scholar 

  66. Radovick S, Nations M, Du Y, Berg LA, Weintraub BD, Wondisford FE. A mutation in the POU-Homeodomain of Pit-1 responsible for combined pituitary hormone deficiency. Science 1992;257:1115-1117.

    Google Scholar 

  67. Sanyanusin P, Schimmenti LA, McNoe LA, Ward TA, Pierpont MEM, Sullivan MJ, Dobyns WB, Eccles MR. Mutation of the PAX2 300 Dattani and Robinson gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet 1995;9:358–363.

    Google Scholar 

  68. Baldwin CT, Hoth CF, Amos JA, da-Silva EO, Milunsky A. An exonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome (see comments). Nature 1992;355:637–638.

    Google Scholar 

  69. Morell R, Friedman TB, Asher JH Jr. A plus-one frameshift mutation in PAX3 alters the entire deduced amino-acid sequence of the paired box in a Waardenburg syndrome type 1 (WS1) family. Hum Mol Genet 1993;2:1487–1488.

    Google Scholar 

  70. Tassabehji M, Read AP, Newton VE, Harris R, Balling R, Gruss P, Strachan T. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 1992;355:635–636.

    Google Scholar 

  71. Glaser T, Walton DS, Maas RL. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat Genet 1992;2:232–238.

    Google Scholar 

  72. Vastardis H, Karimbux N, Guthua SW, Seidman JG, Seidman CE. A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat Genet 1996;13:417–421.

    Google Scholar 

  73. Jabs EW, Muller U, Li X, Ma L, Luo W, Haworth IS, Klisak I, Sparkes R, Warman ML, Mulliken JB, Snead ML, Maxson R. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 1993;75:443–450.

    Google Scholar 

  74. Muragaki Y, Mundlos S, Upton J, Olsen BR. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science 1996;272:548–551.

    Google Scholar 

  75. Rao E, Weiss B, Fukami M, Rump A, Niesler B, Mertz A, Muroya K, Binder G, Kirsch S, Winkelmann M, Nordsiek G, Heinrich U, Breuning MH, Ranke MB, Rosenthal A, Ogata T, Rappold G. A pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nat Genet 1997;16:147–149.

    Google Scholar 

  76. Dasen J, Martinez Barbera JP, Herman T, Rose D, O'Connell S, Olson L, Ju B, Baek SH, Rosenfeld MG. Temporal switching of a paired-like homeodomain repressor/TLE corepressor complex for an activator is required for pituitary organogenesis. Genes Dev 2001;15:3193–3207.

    Google Scholar 

  77. Smith ST, Jaynes JB. A conserved region of engrailed, shared among all en-, gsc-, Nk1-, Nk2-and msh-class homeoproteins, mediates active transcriptional repression in vivo. Development 1996;122:3141–3150.

    Google Scholar 

  78. Wilson DS, Guenther B, Desplan C, Kuriyan J. High resolution crystal structure of a paired (Pax) class cooperative homeodomain dimer on DNA. Cell 1995;82:709–719.

    Google Scholar 

  79. Kissinger CR, Lui B, Martin-Blanco E, Kornberg TB, Pabo CO. Crystal structure of an engrailed homeodomain-DNA complex at 2.8A resolution: A framework for understanding homeodomain-DNA interactions. Cell 1990;63:579–590.

    Google Scholar 

  80. Brickman J, Clements M, Tyrrell R, McNay D, Woods K, Beddington RSP, Dattani MT. Development 2001;128:5189–5199.

    Google Scholar 

  81. Thomas PQ, Dattani MT, Brickman JM, McNay D, Warne G, Zacharin M, Cameron F, Hurst J, Woods K, Dunger D, Stanhope R, Forrest S, Robinson ICAF, Beddington RSP. Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia. Hum Mol Genet 2001;10:39–45.

    Google Scholar 

  82. Piper DE, Batchelor AH, Chang CP, Cleary ML, Wolberger C. Structure of a HoxB1-Pbx1 heterodimer bound to DNA: Role of the hexapeptide and a fourth homeodomain helix in complex formation. Cell 1999;96:587–597.

    Google Scholar 

  83. Lu Q, Kamps MP. Structural determinants within Pbx1 that mediate cooperative DNA binding with pentapeptide-containing Hox proteins: Proposal for a model of a Pbx1-Hox-DNA complex. Molecular and Cellular Biology 1996;16:1632–1640.

    Google Scholar 

  84. Machinis K, Pantel J, Netchine I, Leger J, Camand OJ, Sobrier ML, Moal FD, Duquesnoy P, Abitbol M, Czernichow P, Amselem S. Syndromic short stature in patients with a germline mutation in the Lim homeobox LHX4. Am J Hum Genet 2001;69:961–968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehul Tulsidas Dattani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dattani, M.T., Robinson, I.C. HESX1 and Septo-Optic Dysplasia . Rev Endocr Metab Disord 3, 289–300 (2002). https://doi.org/10.1023/A:1020945406356

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020945406356

Navigation