Skip to main content
Log in

The Gravitational Interaction of Light: From Weak to Strong Fields

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

An explanation is proposed for the fact thatpp-waves superpose linearly when they propagateparallelly, while they interact nonlinearly, scatter andform singularities or Cauchy horizons if they areantiparallel. Parallel pp-waves do interact, but ageneralized gravitoelectric force is exactly cancelledby a gravitomagnetic force. In an analogy, theinteraction of light beams in linearized generalrelativity is also revisited and clarified, a new result isobtained for photon to photon attraction, and aconjecture is proved. Given equal energy density in thebeams, the light-to-light attraction is twice thematter-to-light attraction and four times the matter-to-matterattraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, E. (1980). Exact Solutions of Einstein's Field Equations (Cambridge University Press, Cambridge).

    Google Scholar 

  2. Bonnor, W. B. (1969). Commun. Math. Phys. 13, 163.

    Google Scholar 

  3. Aichelburg, P. C. (1971). Acta Phys. Austriaca 34, 279.

    Google Scholar 

  4. Griffiths, J. B. (1991). Colliding Plane Waves in General Relativity (Clarendon Press, Oxford).

    Google Scholar 

  5. Tolman, R. C., Ehrenfest, P. and Podolsky, B. (1931). Phys. Rev. 37, 602; Tolman, R. C. (1934). Relativity, Thermodynamics and Cosmology (Clarendon Press, Oxford).

    Google Scholar 

  6. Will, C. M. (1993). Theory and Experiment in Gravitational Physics (revised ed., Cambridge University Press, Cambridge).

    Google Scholar 

  7. Wheeler, J. A. (1955). Phys. Rev. 97, 511.

    Google Scholar 

  8. Power, E. A., and Wheeler, J. A. (1957). Rev. Mod. Phys. 29, 480; Brill, R. D., and Wheeler, J. A. (1957). Rev. Mod. Phys. 29, 465; Ernst, F. J. (1957). Phys. Rev. 105, 1662; 1665; Rev. Mod. Phys. 29, 496; Wheeler, J.A. (1961). Rev. Mod. Phys. 33, 63; Wheeler, J.A. (1962). Geometrodynamics (Academic Press, New York); Brill, R. D. and Hartle, J. B. (1964). Phys. Rev. 135, B271.

    Google Scholar 

  9. Sorkin, R. D. et al. (1981). Gen. Rel. Grav. 13, 1127.

    Google Scholar 

  10. Sokolov, S. N. (1992). Gen. Rel. Grav. 24, 519.

    Google Scholar 

  11. Cooperstock, F. I., Faraoni, V., and Perry, G. P. (1996). Int. J. Mod. Phys. D 5, 375; Anderson, P. R., and Brill, D. R., (1997). Phys. Rev. D 56, 4824.

    Google Scholar 

  12. Wald, R. M. (1984). General Relativity (University of Chicago Press, Chicago).

    Google Scholar 

  13. Jantzen, R. T., Carini, P., and Bini, D. (1992). Ann. Phys. (NY) 215, 1.

    Google Scholar 

  14. Schneider, P., Ehlers, J., and Falco, E. E. (1992). Gravitational Lenses (Springer-Verlag, Berlin).

    Google Scholar 

  15. Jackson, J. D. (1962). Classical Electrodynamics (Wiley and Sons, New York).

    Google Scholar 

  16. Penrose, R. (1965). Rev. Mod. Phys. 37, 215.

    Google Scholar 

  17. Ferrari, V., Pendenza, P., and Veneziano, G. (1988). Gen. Rel. Grav. 20, 1185.

    Google Scholar 

  18. Cooperstock, F.I. and Faraoni, V. (1993). Class. Quantum Grav. 10, 1189.

    Google Scholar 

  19. Garriga, J. and Peter, P. (1994). Class. Quantum Grav. 11, 1743.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faraoni, V., Dumse, R.M. The Gravitational Interaction of Light: From Weak to Strong Fields. General Relativity and Gravitation 31, 91–105 (1999). https://doi.org/10.1023/A:1018867405133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018867405133

Navigation