Skip to main content
Log in

Early contributions of molecular phylogenetics to understanding the evolution of Rotifera

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The past decade has seen the application of DNA sequence data to phylogenetic investigations of Rotifera, both expanding and challenging our understanding of the evolution of the phylum. Evidence that Acanthocephala, long regarded as a separate but closely related phylum, is a highly derived class of Rotifera demonstrates the potential of molecular analyses to suggest relationships not obvious from morphological analysis. Phylogenies based on the sequence of the gene for the small ribosomal RNA suggest that rotifers and acanthocephalans are associated with Platyhelminthes and Gastrotricha, perhaps in a clade with Gnathostomula and Cycliophora; at present, this group lacks a clear morphological synapomorphy. A more complete resolution of the molecular phylogeny of Rotifera will require surveying multiple genes and several species from each clade under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abouheif, E., R. Zardoya & A. Meyer, 1998. Limitations of metazoan 18S rRNA sequence data: implications for reconstructing a phylogeny of the animal kingdom and inferring the reality of the Cambrian explosion. J. Mol. Evol. 47: 394–405.

    Google Scholar 

  • Aguinaldo, A. M. A., J. M. Turbeville, L. S. Linford, M. C. Rivera, J. R. Garey, R. A. Raff & J. A. Lake, 1997. Evidence for a clade of nematodes, arthropods and other molting animals. Nature 387: 489–493.

    Google Scholar 

  • Ahlrichs, W. H., 1997. Epidermal ultrastructure of Seison nebaliae and Seison annulatus, and a comparison of epidermal structures within the Gnathifera. Zoomorphology 117: 41–48.

    Google Scholar 

  • Balavoine, G., 1997. The early emergence of platyhelminths is contradicted by the agreement between 18S rRNA and Hox genes data. Comp. Rendus III 320: 83–94.

    Google Scholar 

  • Campos, A., M. P. Cummings, J. L. Reyes & J. P. Laclette, 1998. Phylogenetic relationships of platyhelminthes based on 18S ribosomal gene sequences. Mol. Phylogenet. Evol. 10: 1–10.

    Google Scholar 

  • Carranza, S., J. Baguñà & M. Riutort, 1997. Are the platyhelminthes amonophyletic primitive group? An assessment using 18S rDNA sequences. Mol. Biol. Evol. 14: 485–497.

    Google Scholar 

  • Cavalier-Smith, T., 1998. A revised six-kingdom system of life. Biol. Rev. 73: 203–266.

    Google Scholar 

  • Cummings, M. P., S. P. Otto & J. Wakeley, 1995. Sampling properties of DNA sequence data in phylogenetic analysis. Mol. Biol. Evol. 12: 814–822.

    Google Scholar 

  • Felsenstein, J., 1978. Cases in which parsimony and compatibility methods will be positively misleading. Syst. Zool. 27: 401–410.

    Google Scholar 

  • Felsenstein, J., 1988. Phylogenies from molecular sequences: inferences and reliability. Ann. Rev. Genet. 22: 521–565.

    Google Scholar 

  • García-Varela, M., G. Pérez-Ponce de León, P. de la Torre, M. P. Cummings, S. S. S. Sarma & J. P. Laclette, 2000. Phylogenetic relationships of Acanthocephala based on analysis of 18S ribosomal RNA gene sequences. J. Mol. Evol. 50: 532–540.

    Google Scholar 

  • Garey, J. R., T. J. Near, M. R. Nonnemacher & S. A. Nadler, 1996. Molecular evidence for Acanthocephala as a subtaxon of Rotifera. J. Mol. Evol. 43: 287–292.

    Google Scholar 

  • Garey, J. R., A. Schmidt-Rhaesa, T. J. Near & S. A. Nadler, 1998. The evolutionary relationship of rotifers and acanthocephalans. Hydrobiologia 387/388: 83–91.

    Google Scholar 

  • Giribet, G. & C. Ribera, 1998. The position of arthropods in the animal kingdom: a search for a reliable outgroup for internal arthropod phylogeny. Mol. Phylogenet. Evol. 9: 481–488.

    Google Scholar 

  • Giribet, G. & W. C. Wheeler, 1999. The position of arthropods in the animal kingdom: Ecdysozoa, islands, trees and the ‘parsimony ratchet.’ Mol. Phylogenet. Evol. 13: 619–623.

    Google Scholar 

  • Giribet, G., D. L. Distel, M. Polz, W. Sterrer & W. C. Wheeler, 2000. Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Platyhelminthes and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Syst. Zool. 49: 539–562.

    Google Scholar 

  • Graybeal, A., 1998. Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol. 47: 9–17.

    Google Scholar 

  • Halanych, K.M., 1998. Considerations for reconstructing metazoan history: signal, resolution and hypothesis testing. Am. Zool. 38: 929–941.

    Google Scholar 

  • Halanych, K. M., J. D. Bacheller, A. M. A. Aguinaldo, S. M. Liva, D. M. Hillis & J. A. Lake, 1995. Evidence from 18S ribosomal DNA that lophophorates are protostome animals. Science 267: 1641–1643.

    Google Scholar 

  • Hancock, J. M. & A. P. Vogler, 2000. How slippage-derived sequences are incorporated into rRNA variable-region secondary structure: implications for phylogeny reconstruction. Mol. Phylogenet. Evol. 14: 366–374.

    Google Scholar 

  • Hanelt, B., D. Van Schyndel, C. M. Adema, L. A. Lewis & E. S. Loker, 1996. The phylogenetic position of Rhopalura ophiocomae (Orthonectida) based on 18S ribosomal DNA sequence analysis. Mol. Biol. Evol. 13: 1187–1191.

    Google Scholar 

  • Hashimoto, T., Y. Nakamura, F. Nakamura, T. Shirakura, J. Adachi, N. Goto, K. I. Okamoto & M. Hasegawa, 1994. Protein phylogeny gives a robust estimation for early divergences of eukaryotes: phylogenetic place of a mitochondria-lacking protozoan, Giardia lamblia. Mol. Biol. Evol. 11: 65–71.

    Google Scholar 

  • Håstad, O. & M. Björklund, 1998. Nucleotide substitution models and estimation of phylogeny. Mol. Biol. Evol. 15: 1381–1389.

    Google Scholar 

  • Hendy, M. D. & D. Penny, 1989. A framework for the quantitative study of evolutionary trees. Syst. Zool. 38: 297-309.

    Google Scholar 

  • Hickson, R. E., C. Simon & S. W. Perrey, 2000. The performance of several multiple-sequence alignment programs in relation to secondary-structure features for an rRNA sequence. Mol. Biol. Evol. 17: 530–539.

    Google Scholar 

  • Hillis, D. M., J. P. Huelsenbeck & C. W. Cunningham, 1994. Application and accuracy of molecular phylogenies. Science 264: 671–677.

    Google Scholar 

  • Hillis, D. M., 1996. Inferring complex phylogenies. Nature 383: 130–131.

    Google Scholar 

  • Huelsenbeck, J. P. & R. Nielsen, 1999. Effect of nonindependent substitution on phylogenetic accuracy. Syst. Biol. 48: 317–328.

    Google Scholar 

  • Katayama, T., H. Wada, H. Furuya, N. Satoh & M. Yamamoto, 1995. Phylogenetic position of the dicyemid mesozoa inferred from 18S rDNA sequences. Biol. Bull. 189: 81–90.

    Google Scholar 

  • Kishino, H. & M. Hasegawa, 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J. Mol. Evol. 29: 170–179.

    Google Scholar 

  • Lanyon, S., 1985. Detecting internal inconsistencies in distance data. Syst. Zool. 34: 397–403.

    Google Scholar 

  • Lecointre, G., H. Philippe, H. L.V. Lê & H. Le Guyader, 1993. Species sampling has a major impact on phylogenetic inference. Mol. Phylogenet. Evol. 2: 205–224.

    Google Scholar 

  • Li, W-H., 1997. Molecular Evolution. Sunderland, MA, Sinauer Associates: 487 pp.

    Google Scholar 

  • Littlewood, D. T. J., M. J. Telford, K. A. Clough & K. Rohde, 1998. Gnathostomulida - an enigmatic metazoan phylum from both morphological and molecular perspectives. Mol. Phylogenet. Evol. 9: 72–79.

    Google Scholar 

  • Lorenzen, S., 1985. Phylogenetic aspects of pseudocoelomate evolution. In Morris, S. C., J. D. George, R. Gibson & H. M. Platt (eds), The Origins and Relationships of Lower Invertebrates. Clarendon Press, Oxford: 210–223.

    Google Scholar 

  • Maley, L. E. & C. R. Marshall, 1998. The coming of age of molecular systematics. Science 279: 505–506.

    Google Scholar 

  • Mark Welch, D. B., 2000. Evidence from a protein-coding gene that acanthocephalans are rotifers. Invert. Biol. 119: 17–26.

    Google Scholar 

  • Mark Welch, D. B. & M. Meselson, 2000. A preliminary survey of intron conservation in bdelloid rotifers. Hydrobiologia, this volume.

  • McHugh, D., 1998. Deciphering metazoan phylogeny: the need for new molecular data. Amer. Zool. 38: 859–866.

    Google Scholar 

  • Melone, G., C. Ricci, H. Segers & R. Wallace, 1998. Phylogenetic relationships of phylum Rotifera with emphasis on the families of Bdelloidea. Hydrobiologia 387/388: 101–107.

    Google Scholar 

  • Morrison, D. A. & J. T. Ellis, 1997. Effects of nucleotide sequence alignment on phylogeny estimation: a case study of 18S rDNAs of Apicomplexa. Mol. Biol. Evol. 14: 428–441.

    Google Scholar 

  • Near, T. J., J. R. Garey & S. A. Nadler, 1998. Phylogenetic relationships of the Acanthocephala inferred from 18S ribosomal DNA sequences. Mol. Phylogenet. Evol. 10: 287–298.

    Google Scholar 

  • Parsch, J., J. M. Braverman & W. Stephan, 2000. Comparative sequence analysis and patterns of covariation in RNA secondary structure. Genetics 154: 909–921.

    Google Scholar 

  • Philippe, H., 1997. Rodent monophyly: pitfalls of molecular phylogenies. J. Mol. Evol. 45: 712–715.

    Google Scholar 

  • Philippe, H. & A. Germot, 2000. Phylogeny of eukaryotes based on ribosomal RNA: long-branch attraction and models of sequence evolution. Mol. Biol. Evol. 17: 830–834.

    Google Scholar 

  • Raff, R. A., C. R. Marshall & J.M. Turbeville, 1994. Using DNA sequence to unravel the Cambrian radiation of the animal phyla. Ann. Rev. Ecol. Syst. 25: 351–375.

    Google Scholar 

  • Ruiz-Trillo, I., M. Riutort, D. T. J. Littlewood, E. A. Herniou & J. Baguña, 1999. Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science 283: 1919–1923.

    Google Scholar 

  • Rzhetsky, A., 1995. Estimating substitution rates in ribosomal RNA genes. Genetics 141: 771–783.

    Google Scholar 

  • Rzhetsky, A. & M. Nei, 1995. Tests of applicability of several substitution models for DNA sequence data. Mol. Biol. Evol. 12: 131–151.

    Google Scholar 

  • Schultes, E. A., P. T. Hraber & T. H. LaBean, 1999. Estimating the contributions of selection and self-organization in RNA secondary structure. J. Mol. Evol. 49: 76–83.

    Google Scholar 

  • Sørensen, M. V., P. Funch, E. Willerslev, A. J. Hansen & J. Olesen, 2000. On the phylogeny of the metazoa in the light of Cycliophora and Micrognathozoa. Zoologischer Anzeiger. 239: 297–318.

    Google Scholar 

  • Steel, M. A., P. J. Lockhart & D. Penny, 1993. Confidence in evolutionary trees from biological sequence data. Nature 364: 440–442.

    Google Scholar 

  • Swofford, D. L., G. J. Olsen, P. J. Waddell & D. M. Hillis, 1996. Phylogenetic inference. In Hillis, D. M., C. Moritz & B. K. Mable (eds), Molecular Systematics. 2nd edn. Sinauer Associates, Sunderland, MA: 407–514.

    Google Scholar 

  • Telford, M. J. & P.W. H. Holland, 1993. The phylogenetic affinities of the chaetognaths: a molecular analysis. Mol. Biol. Evol. 10: 660–676.

    Google Scholar 

  • Tillier, E. R. M. & R. A. Collins, 1995. Neighbor joining and maximum likelihood with RNA sequences - addressing the interdependence of sites. Mol. Biol. Evol. 12: 7–15.

    Google Scholar 

  • Van de Peer, Y., J.-M. Neefs, P. De Rijk & R. DeWachter, 1993. Reconstructing evolution from eukaryotic small-ribosomal-subunit RNA sequences: calibration of the molecular clock. J.Mol. Evol. 37: 221–232.

    Google Scholar 

  • Wägele, J. W. & R. Wetzel, 1994. Nucleic acid sequence data are not per se reliable for inference of phylogenies. J. Nat. Hist. 28: 749–761.

    Google Scholar 

  • Wallace, R. L., C. Ricci & G. Melone, 1996. A cladistic analysis of pseudocoelomate (aschelminth) morphology. Inv. Biol. 115: 104–112.

    Google Scholar 

  • Winnepenninckx, B., T. Backeljau, L. Y. Mackey, J. M. Brooks, R. De Wachter, S. Kumar & J. R. Garey, 1995. 18S rDNA data indicate that aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Mol. Biol. Evol. 12: 1132–1137.

    Google Scholar 

  • Winnepenninckx, B. & T. Backeljau, 1996. 18S rRNA alignments derived from different secondary structure models can produce alternative phylogenies. J. Zool. Syst. Evol. Res. 34: 135–143.

    Google Scholar 

  • Winnepenninckx, B., Y. Van De Peer & T. Backeljau, 1998a. Metazoan relationships on the basis of 18S rRNA sequences: a few years later. Am. Zool. 38: 888–906.

    Google Scholar 

  • Winnepenninckx, B. M. H., T. Backeljau & R. M. Kristensen, 1998b. Relations of the new phylum Cycliophora. Nature 393: 636–638.

    Google Scholar 

  • Wirz, A., S. Pucciarelli, C. Miceli, P. Tongiorgi & M. Balsamo, 1999. Novelty in phylogeny of Gastrotricha: evidence from 18S rRNA gene. Mol. Phylogenet. Evol. 13: 314–318.

    Google Scholar 

  • Zrzavý J., S. Mihulka, P. Kepka, A. Bezdek & D. Tietz, 1998. Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics 14: 249–285. Note added in proof: A complete description of Micrognathozoa can be found in: Kristensen, R.M. S.P. Funch, 2000. Micrognathozoa: A new class with complicated jaws like those of Rotifera and Gnathostomulida. V. Morph. 246: 1-49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welch, D.B.M. Early contributions of molecular phylogenetics to understanding the evolution of Rotifera. Hydrobiologia 446, 315–322 (2001). https://doi.org/10.1023/A:1017502923286

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017502923286

Navigation