Skip to main content
Log in

Possibility Theory, Probability Theory and Multiple-Valued Logics: A Clarification

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

There has been a long-lasting misunderstanding in the literature of artificial intelligence and uncertainty modeling, regarding the role of fuzzy set theory and many-valued logics. The recurring question is that of the mathematical and pragmatic meaningfulness of a compositional calculus and the validity of the excluded middle law. This confusion pervades the early developments of probabilistic logic, despite early warnings of some philosophers of probability. This paper tries to clarify this situation. It emphasizes three main points. First, it suggests that the root of the controversies lies in the unfortunate confusion between degrees of belief and what logicians call “degrees of truth”. The latter are usually compositional, while the former cannot be so. This claim is first illustrated by laying bare the non-compositional belief representation embedded in the standard propositional calculus. It turns out to be an all-or-nothing version of possibility theory. This framework is then extended to discuss the case of fuzzy logic versus graded possibility theory. Next, it is demonstrated that any belief representation where compositionality is taken for granted is bound to at worst collapse to a Boolean truth assignment and at best to a poorly expressive tool. Lastly, some claims pertaining to an alleged compositionality of possibility theory are refuted, thus clarifying a pervasive confusion between possibility theory axioms and fuzzy set basic connectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.W. Adams and H.P. Levine, On the uncertainties transmitted from premises to conclusions in deductive inferences, Synthese 30 (1975) 429-460.

    Google Scholar 

  2. R. Aleliunas, Models of reasoning based on formal deductive probability theories, Draft report, University of Waterloo, Canada (1986).

    Google Scholar 

  3. R. Aleliunas, A new normative theory of probabilistic logic, in: Knowledge Representation and Defeasible Reasoning, eds. H.E. Kyburg, Jr., et al. (Kluwer Academic, Dordrecht, 1990) pp. 387-403.

    Google Scholar 

  4. R. Aleliunas, A summary of a new normative theory of probabilistic logic, in: Uncertainty in AI, Vol. 4, eds. R.D. Shachter et al. (North-Holland, Amsterdam, 1990) pp. 199-206.

    Google Scholar 

  5. J.F. Baldwin and B.W. Pilsworth, Fuzzy truth definition of possibility measure for decision classification, Int. J. of Man-Machine Studies 11 (1979) 447-463.

    Google Scholar 

  6. R.E. Bellman and M. Giertz, On the analytic formalism of the theory of fuzzy sets, Information Science 5 (1973) 149-157.

    Google Scholar 

  7. N. Ben Amor, S. Benferhat, D. Dubois, H. Geffner and H. Prade, Independence in qualitative uncertainty frameworks, in: Proc. of 7th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2000), Breckenridge (2000) pp. 235-246.

  8. S. Benferhat, D. Dubois and H. Prade, Some syntactic approaches to the handling of inconsistent knowledge bases: a comparative study, Studia Logica 58 (1997) 17-45.

    Google Scholar 

  9. A.D.C. Bennett, J.B. Paris and A. Venkovska, A new criterion for comparing fuzzy logics for uncertain reasoning, J. Logic, Language, Information 9 (2000) 31-63.

    Google Scholar 

  10. P. Besnard and A. Hunter, eds., Reasoning with Actual and Potential Contradictions, Handbook of Defeasible Reasoning and Uncertainty Management Systems, Vol. 2, eds. D.M. Gabbay and P. Smets (Kluwer Academic, Dordrecht, 1998).

    Google Scholar 

  11. L. Boldrin and C. Sossai, Truth-functionality and measure-based logics, in: Fuzzy Sets, Logics and Reasoning about Knowledge, eds. D. Dubois, H. Prade and E.P. Klement (Kluwer Academic, Dordrecht, 1999) pp. 351-380.

    Google Scholar 

  12. J.C. Bezdek and S. Pal, Fuzzy Models for Pattern Recognition (IEEE Press, New York, 1996) chapter 1.

    Google Scholar 

  13. B.G. Buchanan and E.H. Shortliffe, Rule-Based Expert Systems (Addison-Wesley, Reading, MA, 1984).

    Google Scholar 

  14. D. Butnariu, E.P. Klement and S. Zofrany, On triangular norm-based propositional fuzzy logics, Fuzzy Sets and Systems 69 (1995) 241-255.

    Google Scholar 

  15. R. Carnap, Two concepts of probability, Philosophy and Phenomenological Research 5 (1945) 513-532.

    Google Scholar 

  16. M. Cayrol, H. Farreny and H. Prade, Fuzzy pattern matching, Kybernetes 11 (1982) 103-116.

    Google Scholar 

  17. P. Cheeseman, Probabilistic versus fuzzy reasoning, in: Uncertainty in Artificial Intelligence 1, eds. L. Kanal and J. Lemmer (North-Holland, Amsterdam, 1988) pp. 85-102.

    Google Scholar 

  18. R. Cox, Probability, frequency and reasonable expectation, American J. Phys. 14 (1946) 1-13.

    Google Scholar 

  19. M. Davio and A. Thayse, Representation of fuzzy functions, Philips Res. Rep. 29 (1973) 93-106.

    Google Scholar 

  20. L.M. De Campos and J.F. Huete, Independence concepts in possibility theory, Part I: Fuzzy Sets and Systems 103 (1999) 127-152; Part II: Fuzzy Sets and Systems 103 (1999) 487-505.

    Google Scholar 

  21. G. De Cooman, Possibility theory-Part I: Measure-and integral-theoretics groundwork; Part II: Conditional possibility; Part III: Possibilistic independence, Int. J. of General Systems 25(4) (1997) 291-371.

    Google Scholar 

  22. G. De Cooman, From possibilistic information to Kleene' strong multi-valued logics, in: Fuzzy Sets, Logics and Reasoning about Knowledge, eds. D. Dubois, H. Prade and E.P. Klement (Kluwer Academic, Dordrecht, 1999) pp. 315-323.

    Google Scholar 

  23. G. De Cooman and D. Aeyels, Supremum-preserving upper probabilities, Information Sciences 118 (1999) 173-212.

    Google Scholar 

  24. B. De Finetti, La logique de la probabilité, in: Actes Congrès Int. de Philos. Scient., Paris 1935 (Hermann et Cie Editions, Paris, 1936) pp. IV1-IV9.

    Google Scholar 

  25. B. De Finetti, Theory of Probability-A Critical Introductory Treatment, Vols. 1, 2 (Wiley, Chichester, 1974).

    Google Scholar 

  26. M. De Glas, A few critical remarks on possibility theory, Research report 88/23, LAFORIA, University Paris VI (1988).

  27. D. Dubois, Belief structures, possibility theory and decomposable confidence measures on finite sets, Comput. Artif. Intell. (Bratislava) 5(5) (1986) 403-416.

    Google Scholar 

  28. D. Dubois, L. Fariñas del Cerro, A. Herzig and H. Prade, An ordinal view of independence with application to plausible reasoning, in: Proc. of the 10th Conf. on Uncertainty in Artificial Intelligence eds. R. Lopez de Mantaras and D. Poole, Seattle, WA (July 29-31, 1994) pp. 195-203.

  29. D. Dubois, L. Fariñas del Cerro, A. Herzig and H. Prade, Qualitative relevance and independence: A roadmap, in: Proc. of the 15h Int. Joint Conf. on Artificial Intelligence (IJCAI'97), Nagoya, Japan (August 23-29, 1997) pp. 62-67. Extended version “A roadmap of qualitative independence”, in: Fuzzy Sets, Logics and Reasoning about Knowledge, eds. D. Dubois, H. Prade and E.P. Klement (Kluwer Academic, Dordrecht, 1999) pp. 325-350.

  30. D. Dubois, E. Kerre, R. Mesiar and H. Prade, Fuzzy interval analysis, in: Fundamentals of Fuzzy Sets eds. D. Dubois and H. Prade (Kluwer Academic, Dordrecht, 2000) pp. 483-582.

    Google Scholar 

  31. D. Dubois, J. Lang and H. Prade, Fuzzy sets in approximate reasoning-Part 2: Logical approaches, Fuzzy Sets and Systems 40 (1991) 203-244.

    Google Scholar 

  32. D. Dubois, J. Lang and H. Prade, Automated reasoning using possibilistic logic: Semantics, belief revision, and variable certainty, IEEE Trans. on Knowledge and Data Engineering 6 (1994) 64-71.

    Google Scholar 

  33. D. Dubois, J. Lang and H. Prade, Possibilistic logic, in: Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 3 eds. D.M. Gabbay, C.J. Hogger, J.A. Robinson and D. Nute (Oxford University Press, Oxford, 1994) pp. 439-513.

    Google Scholar 

  34. D. Dubois, W. Ostasiewicz and H. Prade, Fuzzy sets: History and basic notions, in: Fundamentals of Fuzzy Sets, eds. D. Dubois and H. Prade (Kluwer Academic, Dordrecht, 2000) pp. 21-124.

    Google Scholar 

  35. D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications (Academic Press, New York, 1980).

    Google Scholar 

  36. D. Dubois and H. Prade, A class of fuzzy measures based on triangular norms-A general framework for the combination of uncertain information, Int. J. of General Systems 8(1) (1982) 43-61.

    Google Scholar 

  37. D. Dubois and H. Prade, Possibility Theory (Plenum Press, New York, 1988).

    Google Scholar 

  38. D. Dubois and H. Prade, An introduction to possibilistic and fuzzy logics (with discussions), in: Non Standard Logics for Automated Reasoning, eds. P. Smets et al. (Academic Press, New York, 1988) pp. 287-315, 321-326.

    Google Scholar 

  39. D. Dubois and H. Prade, Epistemic entrenchment and possibilistic logic, Artificial Intelligence 50 (1991) 223-239.

    Google Scholar 

  40. D. Dubois and H. Prade, When upper probabilities are possibility measures, Fuzzy Sets and Systems 49 (1992) 65-74.

    Google Scholar 

  41. D. Dubois and H. Prade, Possibility theory is not fully compositional!-A comment on a short note by H.J. Greenberg, Fuzzy Sets and Systems 95 (1998) 131-134.

    Google Scholar 

  42. D. Dubois and H. Prade, Possibility theory: qualitative and quantitative aspects, in: Handbook of Defeasible Reasoning and Uncertainty Management Systems, Vol. 1, eds. D.M. Gabbay and P. Smets (Kluwer Academic, Dordrecht, 1998) pp. 169-226.

    Google Scholar 

  43. D. Dubois, H. Prade and P. Smets, Representing partial ignorance, IEEE Trans. on Systems, Man and Cybernetics 26 (1996) 361-377.

    Google Scholar 

  44. R. Duda, J. Gaschnig and P. Hart, Model design in the Prospector consultant system for mineral exploration, in: Expert Systems in the Microelectronic Age, ed. D. Michie (Edinburgh University Press, 1981) pp. 153-167.

  45. Ch. Elkan, The paradoxical success of fuzzy logic, in Proc. AAAI'93, Washington, DC, (July 11-15, 1993) pp. 698-703. Extended version (with discussions), IEEE Expert 9(4) (1994) 2-49.

  46. T. Fine, Theories of Probability (Academic Press, New York, 1973).

    Google Scholar 

  47. L. Fuchs, Partially Ordered Algebraic Systems (Pergamon Press, Oxford, 1963).

    Google Scholar 

  48. P. Gärdenfors, Knowledge in Flux (MIT Press, Cambridge, MA, 1988).

    Google Scholar 

  49. M. Gehrke, C. Walker and E. Walker, De Morgan systems on the unit interval, Int. J. of Intelligent Systems 11 (1996) 733-750.

    Google Scholar 

  50. S. Gottwald, Many-valued logic and fuzzy set theory, in: Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, eds. U. Hoehle and S. Rodabaugh, The Handbooks of Fuzzy Sets Series (Kluwer Academic, Dordrecht, 1999) pp. 5-90.

    Google Scholar 

  51. H.J. Greenberg, Possibilities of logically equivalent expressions, Fuzzy Sets and Systems 86 (1997) 249-250.

    Google Scholar 

  52. S. Haack, Do we need “fuzzy logic”?, Int. J. of Man-Machine Studies 11 (1979) 437-445.

    Google Scholar 

  53. P. Hajek, The Metamathematics of Fuzzy Logics (Kluwer Academic, Dordrecht, 1998).

    Google Scholar 

  54. J. Halpern, A counterexample to theorems of Cox and Fine, J. Artificial Intelligence Res. 110 (1999) 67-85.

    Google Scholar 

  55. R. Hähnle, Automated Deduction in Multiple-Valued Logics (Oxford Univ. Press, Oxford, UK, 1994).

    Google Scholar 

  56. A. Kandel, On minimization of fuzzy functions, IEEE Trans. on Computers 22 (1973) 826-832.

    Google Scholar 

  57. A. Kandel and A. Lee, Fuzzy Switching and Automata (Crane Russak, New York, 1979).

    Google Scholar 

  58. S.C. Kleene, Introduction to Metamathematics (North-Holland, Amsterdam, 1952).

    Google Scholar 

  59. E.P. Klement and M. Navarra, Propositional fuzzy logics based on Frank t-norms: A comparison, in: Fuzzy Sets, Logics and Reasoning about Knowledge, eds. D. Dubois, H. Prade and E.P. Klement (Kluwer Academic, Dordrecht, 1999) pp. 25-47.

    Google Scholar 

  60. M. Laviolette and J.W. Seaman, Jr., The efficacy of fuzzy representations of uncertainty, IEEE Trans. on Fuzzy Systems 2 (1994) 4-15.

    Google Scholar 

  61. R.C.T. Lee, Fuzzy logic and the resolution principle, J. of the ACM 19 (1972) 109-119.

    Google Scholar 

  62. R.T.C. Lee and C.L. Chang, Some properties of fuzzy logic, Information and Control 19 (1971) 417-431.

    Google Scholar 

  63. L. Lesmo, L. Saitta and P. Torasso, Evidence combination in expert systems, Int. J. Man-Machine Studies 22 (1985) 307-326.

    Google Scholar 

  64. J. Lukasiewicz, Philosophical remarks on many-valued systems of propositional logic, (1930) reprinted in: Selected Works, ed. Borkowski, Studies in Logic and the Foundations of Mathematics (North-Holland, Amsterdam, 1970) pp. 153-179.

    Google Scholar 

  65. G. Moisil, La logique des concepts nuancés, in: Essais sur les Logiques Non Chrysippiennes (Editions Acad. Repub. Soc. Roum, Bucharest, 1972) pp. 57-163.

    Google Scholar 

  66. M. Mukaidono, The representation and minimization of fuzzy functions, in: The Analysis of Fuzzy Information, Vol. 1, ed. J. Bezdek (CRC Press, Boca Raton, FL, 1987) pp. 213-229.

    Google Scholar 

  67. N.J. Nilsson, Probabilistic logic, Artificial Intelligence 28 (1986) 71-87.

    Google Scholar 

  68. E. Pap, Null-Additive Set Functions (Kluwer Academic, Dordrecht, 1994).

    Google Scholar 

  69. J. Paris, The Uncertain' Reasoner' Companion (Cambridge University Press, 1994).

  70. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, San Mateo, CA, 1988).

    Google Scholar 

  71. J. Pearl, Integrating probability and logic, in: Readings in Uncertainty for Artificial Intelligence, eds. J. Pearl and G. Shafer (Morgan Kaufmann, San Francisco, 1990) pp. 677-679.

    Google Scholar 

  72. F. Preparata and R.T. Yeh, Continuously-valued logic, J. Comput. & Syst. Sci. 6 (1972) 397-418.

    Google Scholar 

  73. H. Reichenbach, The Theory of Probability (University of California Press, 1949).

  74. D.G. Schwartz, A min-max semantics for fuzzy likelihood, in: Proc. of 1st IEEE Int. Conf. on Fuzzy Systems, San Diego, CA (March 8-12, 1992) pp. 1393-1398.

  75. D.G. Schwartz, Layman' probability theory: a calculus for reasoning with linguistic likelihood, Information Sciences 126 (2000) 71-82.

    Google Scholar 

  76. G. Shafer, A Mathematical Theory of Evidence (Princeton University Press, Princeton, NJ, 1976).

    Google Scholar 

  77. P. Smets and R. Kennes, The transferable belief model, Artificial Intelligence 66 (1994) 191-234.

    Google Scholar 

  78. D. Tsichritsis, Participation measures, J. Math. Analysis & Appl. 36 (1971) 60-72.

    Google Scholar 

  79. P. Walley, Statistical Reasoning with Imprecise Probabilities (Chapman and Hall, 1991).

  80. S. Weber, ⊥-decomposable measures and integrals for Archimedean t-conorms ⊥, J. of Math. Anal. and Appl. 101 (1984) 114-138.

    Google Scholar 

  81. T. Weston, Approximate truth, J. Philos. Logic 16 (1987) 203-227.

    Google Scholar 

  82. L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.

    Google Scholar 

  83. L.A. Zadeh, Fuzzy logic and approximate reasoning (in memory of Grigore Moisil), Synthese 30 (1975) 407-428.

    Google Scholar 

  84. L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Information Sciences, Part 1: 8 (1975) 199-249, Part 2: 8 (1975) 301-357, Part 3: 9 (1975) 43-80.

    Google Scholar 

  85. L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems 1 (1978) 3-28.

    Google Scholar 

  86. L.A. Zadeh, A theory of approximate reasoning, in: Machine Intelligence, Vol. 9, eds. J.E. Hayes, D. Michie and L.I. Mikulich (Elsevier, New York, 1979) pp. 149-194.

    Google Scholar 

  87. L.A. Zadeh, Test score semantics for natural languages and meaning representation via PRUF, in: Empirical Semantics, Vol. 1, ed. B.B. Rieger (Bochum, Brockmeyer, 1982) pp. 281-349.

    Google Scholar 

  88. H.-J. Zimmermann, Fuzzy Set Theory and its Applications (Kluwer Academic, Norwell, MA, 3rd ed., 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubois, D., Prade, H. Possibility Theory, Probability Theory and Multiple-Valued Logics: A Clarification. Annals of Mathematics and Artificial Intelligence 32, 35–66 (2001). https://doi.org/10.1023/A:1016740830286

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016740830286

Keywords

Navigation