Skip to main content
Log in

DNA loss and evolution of genome size in Drosophila

Genetica Aims and scope Submit manuscript

Abstract

Mutation is often said to be random. Although it must be true that mutation is ignorant about the adaptive needs of the organism and thus is random relative to them as a rule, mutation is not truly random in other respects. Nucleotide substitutions, deletions, insertions, inversions, duplications and other types of mutation occur at different rates and are effected by different mechanisms. Moreover the rates of different mutations vary from organism to organism. Differences in mutational biases, along with natural selection, could impact gene and genome evolution in important ways. For instance, several recent studies have suggested that differences in insertion/deletion biases lead to profound differences in the rate of DNA loss in animals and that this difference per se can lead to significant changes in genome size. In particular, Drosophila melanogaster appears to have a very high rate of deletions and the correspondingly high rate of DNA loss and a very compact genome. To assess the validity of these studies we must first assess the validity of the measurements of indel biases themselves. Here I demonstrate the robustness of indel bias measurements in Drosophila, by comparing indel patterns in different types of nonfunctional sequences. The indel pattern and the high rate of DNA loss appears to be shared by all known nonfunctional sequences, both euchromatic and heterochromatic, transposable and non-transposable, repetitive and unique. Unfortunately all available nonfunctional sequences are untranscribed and thus effects of transcription on indel bias cannot be assessed. I also discuss in detail why it is unlikely that natural selection for or against DNA loss significantly affects current estimates of indel biases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yampolsky L. Y. and Stoltzfus A.: Evol. Dev. 3 (2001): 73-83.

    Google Scholar 

  2. Stoltzfus A.: J. Mol. Evol. 49 (1999): 169-181.

    Google Scholar 

  3. Li W. H., Wu C. I. and Luo C. C.: J. Mol. Evol. 21 (1984): 58-71.

    Google Scholar 

  4. Gojobori T., Li W. H. and Graur D.: J. Mol. Evol. 18 (1982): 360-369.

    Google Scholar 

  5. Bensasson D., Zhang D.-X., Hartl D. L. and Hewitt G. M.: Trends Ecol. Evol. 16 (2001): 314-321.

    Google Scholar 

  6. Petrov D. A., Lozovskaya E. R. and Hartl D. L.: Nature 384 (1996): 346-349.

    Google Scholar 

  7. Petrov D. A. and Hartl D. L.:Mol. Biol. Evol. 15 (1998): 293-302.

    Google Scholar 

  8. Petrov D. A. et al.: Science 287 (2000): 1060-1062.

    Google Scholar 

  9. Bensasson D. et al.: Mol. Biol. Evol. 18 (2001): 246-253.

    Google Scholar 

  10. Petrov D. A.: Trends Genet. 17 (2001): 23-28.

    Google Scholar 

  11. Petrov D. A. and Hartl D. L.: Gene 205 (1997): 279-289.

    Google Scholar 

  12. Hardies S. C. et al.: Mol. Biol. Evol. 3 (1986): 109-125.

    Google Scholar 

  13. Luan D. D., Korman M. H., Jacubczak J. L. and Eickbush T. H.: Cell 72 (1993): 595-605.

    Google Scholar 

  14. Lathe W. C., Burke W. D., Eickbush D. G. and Eickbush T. H.: Mol. Biol. Evol. 12 (1995): 1094-1105.

    Google Scholar 

  15. Burke W. D., Malik H. S., Lathe W. C., 3rd and Eickbush T. H.: Nature 392 (1998): 141-142.

    Google Scholar 

  16. Weiner A. M., Deininger P. L. and Efstratiadis A.: Annu. Rev. Biochem. 55 (1986): 631-661.

    Google Scholar 

  17. Malik H. S., Burke W. D. and Eickbush T. H.: Mol. Biol. Evol. 16 (1999): 793-805.

    Google Scholar 

  18. Hutchison III C. A. et al.: In: Berg D. E. and Howe M. M. (eds), Mobile DNA. American Society for Microbiology, 1989, pp. 593-617.

  19. Petrov D. A., Schutzman J. L., Hartl D. L. and Lozovskaya E. R.: Proc. Natl. Acad. Sci. USA 92 (1995): 8050-8054.

    Google Scholar 

  20. Graur D., Shuali Y. and Li W. H.: J. Mol. Evol. 28 (1989): 279-285.

    Google Scholar 

  21. Gu X. and Li W.-H.: J. Mol. Evol. 40 (1995): 464-473.

    Google Scholar 

  22. Ophir R. and Graur D.: Gene 205 (1997): 191-202.

    Google Scholar 

  23. Robertson H. M. and Martos R.: Gene 205 (1997): 219-228.

    Google Scholar 

  24. Sharp P. M. and Li W.-H.: J. Mol. Evol. 28 (1989): 398-402.

    Google Scholar 

  25. Bensasson D., Zhang D. X. and Hewitt G. M.:Mol. Biol. Evol. 17 (2000): 406-415.

    Google Scholar 

  26. Jensen S. and Heidmann T.: EMBO J. 10 (1991): 1927-1937.

    Google Scholar 

  27. Pelisson A., Finnegan D. J. and Bucheton A.: Proc. Natl. Acad. Sci. USA 88 (1991): 4907-4910.

    Google Scholar 

  28. Lozovskaya E. R., Nurminsky D. I., Petrov D. A. and Hartl D. L.: Genes Genet. Syst. 74 (1999): 201-207.

    Google Scholar 

  29. Lozovskaya E. R., Scheinker V. S. and Evgen'ev M. B.: Genetics 126 (1990): 619-623.

    Google Scholar 

  30. Petrov D. A., Chao Y.-C., Stephenson E. C. and Hartl D. L.: Mol. Biol. Evol. 15 (1998): 1562-1567.

    Google Scholar 

  31. Pritchard J. K. and Schaeffer S.W.: Genetics 147 (1997): 199-208.

    Google Scholar 

  32. Ramos-Onsins S. and Aguade M.: Genetics 150 (1998): 157-171.

    Google Scholar 

  33. Robin G. C., Russell R. J., Cutler D. J. and Oakeshott J. G.: Mol. Biol. Evol. 17 (2000): 563-575.

    Google Scholar 

  34. Selker E. U.: Trends Genet. 13 (1997): 296-301.

    Google Scholar 

  35. Birchler J. A., Pal-Bhadra M. and Bhadra U.: Nat. Genet. 21 (1999): 148-149.

    Google Scholar 

  36. Pal-Bhadra M., Bhadra U. and Birchler J. A.: Cell 90 (1997): 479-490.

    Google Scholar 

  37. Yoder J. A., Walsh C. P. and Bestor T. H.: Trends Genet. 13 (1997): 335-340.

    Google Scholar 

  38. Henikoff S. and Matzke M. A.: Trends Genet. 13 (1997): 293-295.

    Google Scholar 

  39. Swofford D. L.: PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4, Sinauer Associatesx, 2001.

  40. Russo C. A. M., Takezaki N. and Nei M.: Mol. Biol. Evol. 12 (1995): 391-404.

    Google Scholar 

  41. de Laat W. L., Jaspers N. G. and Hoeijmakers J. H.: Genes Dev 13 (1999): 768-785.

    Google Scholar 

  42. de Cock J. G. et al.: Nucl. Acids Res. 20 (1992): 4789-4793.

    Google Scholar 

  43. van der Helm P. J., Klink E. C., Lohman P. H. and Eeken J. C.: Mutat. Res. 383 (1997): 113-124.

    Google Scholar 

  44. Sekelsky J. J., Brodsky M. H. and Burtis K. C.: J. Cell. Biol. 150 (2000): F31-F36.

    Google Scholar 

  45. Comeron J. M. and Kreitman M.: Genetics 156 (2000): 1175-1190.

    Google Scholar 

  46. Charlesworth B.: Nature 384 (1996): 315-316.

    Google Scholar 

  47. Petrov D. A. and Hartl D. L.: J. Hered. 91 (2000): 221-227.

    Google Scholar 

  48. Robertson H. M.: Genome Res. 10 (2000): 192-203.

    Google Scholar 

  49. Kirik A., Salomon S. and Puchta H.: Embo. J. 19 (2000): 5562-5566.

    Google Scholar 

  50. Adams M. D. et al.: Science 287 (2000): 2185-2195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrov, D.A. DNA loss and evolution of genome size in Drosophila . Genetica 115, 81–91 (2002). https://doi.org/10.1023/A:1016076215168

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016076215168

Navigation