Skip to main content
Log in

Absorption and Presystemic Metabolism of Selegiline Hydrochloride at Different Regions in the Gastrointestinal Tract in Healthy Males

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The absorption and disposition of selegiline (SEL) and its metabolites N-desmethylselegiline (DMS), L-methamphetamine (MET), and L-amphetamine (AMP) were assessed in 8 healthy male volunteers at proximal and distal regions of the intestine relative to oral administration (in the stomach) to determine if intestinal site dependence contributed to the erratic oral absorption of selegiline hydrochloride which is manifest as low and variable bioavailability.

Methods. An open-label, four-way crossover, single dose pharmacokinetic study comparing the bioavailability of 10 mg selegiline hydrochloride administered to healthy young males as a solution by the oral route (in the stomach) and by a nasoenteric tube to the following three sites: duodenum, jejunum and terminal ileum was conducted. Infusions were administered over a 1 minute interval and a two week washout was observed between treatments. Samples were taken over 96 hours and analyzed by LC/MS/MS.

Results. Selegiline exposure was greatest following administration to the stomach (~150% > duodenum or jejunum) and least in the terminal ileum (~33% less than duodenum or jejunum). Duodenal and jejunal sites were equivocal based on selegiline absorption and subsequent metabolism. While both AMP and MET exposure was equivalent at all dosing sites, DMS exposure was less (~18%) at the terminal ileum.

Conclusions. The oral absorption of selegiline is neither permeability-limited or intestinal site-dependent. Stomach absorption may bypass presystemic metabolism. The reduced DMS exposure at the terminal ileum is consistent with the theorized presystemic formation of DMS via luminal P450 enzymes and the density of these enzymes in the duodenum and jejunum relative to the ileum. AMP and MET metabolites were insensitive to dosing site consistent with their hepatic formation. The true magnitude of these effects would require multiple dosing as single dose pharmacokinetics do not predict the extent of multiple dose selegiline exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. E. H. Heinonen, M. Anttila, H. Karnani, R. Lammintausta. Mov. Disord. 9(Suppl. 1):P248 (1994).

    Google Scholar 

  2. T. Yoshida, T. Oguro, and Y. Kuroiwa. Xenobiotica 17(8):957–963 (1987).

    Google Scholar 

  3. L. Yamlahi, J. G. Besner, and G. Caille. Pharm. Res. 10(10), Suppl:S336 (1993).

    Google Scholar 

  4. J. S. Barrett, S. Rohatagi, K. E. DeWitt, R. J. Morales, and A. R. DiSanto. Am. J. Ther. 3:298–313 (1996).

    Google Scholar 

  5. S. Rohatagi, J. S. Barrett, K. E. DeWitt, and R. J. Morales. Biopharm. Drug Dispos. (in press).

  6. J. Gaudreault, S. Wang, and R. Lalonde. Pharm. Res. 12(9, Suppl):S-327 (1995).

    Google Scholar 

  7. J. S. Barrett, S. Rohatagi, K. E. DeWitt, and R. M. Morales. Clin. Pharm. Ther. 59(2):PIII–75,206 (1996).

    Google Scholar 

  8. P. J. Sinko, N. R. Patel, and P. Hu. Int. J. Pharm. 109:125–133 (1994).

    Google Scholar 

  9. P. E. Warner, K. L. R. Brouwer, E. K. Hussey, G. E. Dukes, W. D. Heizer, K. H. Donn, I. M. Davis, and J. R. Powell. Pharm. Res. 12(1):138–143 (1995).

    Google Scholar 

  10. P. H. Marathe, D. E. Salazar, D. S. Greene, J. Brennan, U. A. Shukla, R. H. Barbhaiya. Pharm. Res. 12(11):1716–1721 (1996).

    Google Scholar 

  11. K. K. H. Chan, A. Buch, R. D. Glazer, V. A. John, and W. H. Barr. Pharm. Res. 11(3):432–437 (1994).

    Google Scholar 

  12. J. M. Grace, M. T. Kinter, and T. L. Macdonald. Chem. Res. Toxicol. 7(3):286–290 (1994).

    Google Scholar 

  13. D. R. Krishna and U. Klotz. Clin. Pharmacokinet. 26(2):144–160 (1994).

    Google Scholar 

  14. K. F. Ilet, L. B. G. Tee, P. T. Reeves, and R. F. Minchin. Pharmac. Ther. 46:67–93 (1990).

    Google Scholar 

  15. D. Lessard, F. Beaudry, and A. Niggebrugge. Pharm. Res. 11(10, Suppl):S-17 (1994).

    Google Scholar 

  16. SAS Institute, Cary, North Carolina

  17. FDA Division of Bioequivalence. Guidance: Statistical Procedures for Bioequivalence Studies Using a Standard Two-Treatment Crossover Design. July 1, 1992.

  18. I. Mahmood, J. S. Marinac, S. Willsie, and W. D. Mason. Biopharm. Drug Dispos. 16:535–545 (1995).

    Google Scholar 

  19. E. H. Heinonen, M. I. Anttila, and R. A. S. Lammintausta. Clin. Pharmacol. Ther. 56:742–749 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrett, J.S., Szego, P., Rohatagi, S. et al. Absorption and Presystemic Metabolism of Selegiline Hydrochloride at Different Regions in the Gastrointestinal Tract in Healthy Males. Pharm Res 13, 1535–1540 (1996). https://doi.org/10.1023/A:1016035730754

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016035730754

Navigation