Skip to main content
Log in

An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Nostoc punctiforme is a filamentous cyanobacterium with extensive phenotypic characteristics and a relatively large genome, approaching 10 Mb. The phenotypic characteristics include a photoautotrophic, diazotrophic mode of growth, but N. punctiforme is also facultatively heterotrophic; its vegetative cells have multiple developmental alternatives, including terminal differentiation into nitrogen-fixing heterocysts and transient differentiation into spore-like akinetes or motile filaments called hormogonia; and N. punctiforme has broad symbiotic competence with fungi and terrestrial plants, including bryophytes, gymnosperms and an angiosperm. The shotgun-sequencing phase of the N. punctiforme strain ATCC 29133 genome has been completed by the Joint Genome Institute. Annotation of an 8.9 Mb database yielded 7432 open reading frames, 45% of which encode proteins with known or probable known function and 29% of which are unique to N. punctiforme. Comparative analysis of the sequence indicates a genome that is highly plastic and in a state of flux, with numerous insertion sequences and multilocus repeats, as well as genes encoding transposases and DNA modification enzymes. The sequence also reveals the presence of genes encoding putative proteins that collectively define almost all characteristics of cyanobacteria as a group. N. punctiforme has an extensive potential to sense and respond to environmental signals as reflected by the presence of more than 400 genes encoding sensor protein kinases, response regulators and other transcriptional factors. The signal transduction systems and any of the large number of unique genes may play essential roles in the cell differentiation and symbiotic interaction properties of N. punctiforme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams DG and Duggan PS (1999) Heterocyst differentiation and akinete differentiation in cyanobacteria. New Phytol 144: 3–33

    Article  Google Scholar 

  • Angeloni SV and Potts M (1994) Analysis of the sequences within and flanking the cyanoglobin-encoding gene, glbN, of the cyanobacterium Nostoc commune UTEX 584. Gene 146: 133–134

    Article  PubMed  CAS  Google Scholar 

  • Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosynth Res 60: 43–73

    Article  CAS  Google Scholar 

  • Bhaya D, Schwarz R and Grossman AR (2000) Molecular responses to environmental stress. In: Whitton BA and Potts M (eds) The Ecology of Cyanobacteria. Their Diversity in Time and Space, pp 397–442. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Bickle T and Krüger DH (1993) Biology of DNA restriction. Microbiol Rev 57: 434–450

    PubMed  CAS  Google Scholar 

  • Black K, Buikema W and Haselkorn R (1995) The hglK gene is required for localization of heterocyst-specific glycolipids in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 177: 6440–6448

    PubMed  CAS  Google Scholar 

  • Black TA and Wolk CP (1994) Analysis of a Het¯ mutation in Anabaena sp. strain PCC 7120 implicates a secondary metabolite in the regulation of heterocyst spacing. J Bacteriol 176: 2282–2292

    PubMed  CAS  Google Scholar 

  • Blattner FR, Plunkett III G, Bloch CA, Perna NT, Burland V and 12 others (1997) The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1479

    Article  PubMed  CAS  Google Scholar 

  • Brusca JS, Hale MA, Carrasco CD and Golden JW (1989) Excision of an 11-kilobase-pair DNA element from within the nifD gene in Anabaena variabilis heterocysts. J Bacteriol 171: 4138–4145

    PubMed  CAS  Google Scholar 

  • Buikema WJ and Haselkorn R (1993) Molecular genetics of cyanobacterial development. Ann Rev Plant Physiol Plant Mol Biol 44: 33–52

    Article  CAS  Google Scholar 

  • Cai Y and Wolk CP (1997) Nitrogen deprivation of Anabaena sp. strain PCC 7120 elicits rapid activation of a gene cluster that is essential for uptake and utilization of nitrate. J Bacteriol 179: 258–266

    PubMed  CAS  Google Scholar 

  • Campbell EL and Meeks JC (1989) Characteristics of hormogonia formation by symbiotic Nostoc spp. in response to the presence of Anthoceros punctatus or its extracellular products App Environ Microbiol 55: 125–131

    Google Scholar 

  • Campbell EL and Meeks JC (1992) Evidence for plant-mediated regulation of nitrogenase expression in the Anthoceros-Nostoc symbiotic association. J Gen Microbiol 138: 473–480

    CAS  Google Scholar 

  • Campbell EL, Hagen KD, Cohen MF, Summers ML and Meeks JC (1996) The devR gene product is characteristic of receivers of two-component regulatory systems and is essential for heterocyst development in the filamentous cyanobacterium Nostoc sp. strain ATCC 29133 J Bacteriol 178: 2037–2043

    PubMed  CAS  Google Scholar 

  • Campbell EL, Brahamsha B and Meeks JC (1998) Mutation of an alternative sigma factor in the cyanobacterium Nostoc punctiforme results in increased infection of its symbiotic plant partner, Anthoceros punctatus. J Bacteriol 180: 4938–4941

    PubMed  CAS  Google Scholar 

  • Carrasco CD, Buettner JA and Golden JW (1995) Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocysts. Proc Natl Acad Sci USA 92: 791–795

    Article  PubMed  CAS  Google Scholar 

  • Castenholz RW and Waterbury JB (1989) Oxygenic photosynthetic bacteria. Group I. Cyanobacteria. In: Staley JT, Bryant MP, Pfenning N and Holt JG (eds) Bergey's Manual of Systematic Bacteriology, Vol 3, pp 1710–1789. Williams and Wilkins, Baltimore

    Google Scholar 

  • Cohen MF and Meeks JC (1997) A hormogonium regulating locus hrmUA, of the cyanobacterium Nostoc punctiforme strain ATCC 29133 and its response to an extract of a symbiotic plant partner Anthoceros punctatus. Mol Plant Microbe Inter 10: 280–289

    CAS  Google Scholar 

  • Cohen MF, Meeks JC, Cai YA and Wolk CP (1998) Transposon mutagenesis of heterocyst-forming filamentous cyanobacteria. Meth Enzymol 297: 3–17

    Article  CAS  Google Scholar 

  • Curtis SE and Martin JA (1994) The transcription apparatus and the regulation of transcription initiation. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 613–639. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Dean DR and Jacobson MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris RH and Evans HJ (eds) Biological Nitrogen Fixation, pp 763–834. Chapman & Hall, New York

    Google Scholar 

  • Des Marais DJ (2000) When did photosynthesis emerge on earth? Science 289: 1703-1705 Douglas SE (1994) Chloroplast origins and evolution. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 91- 118. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Dow CS and Swoboda UK (2000) Cyanotoxins. In: Whitton BA and Potts M (eds) The Ecology of Cyanobacteria Their Diversity in Time and Space, pp 613–632. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Elhai J (2001) Determination of bias in the relative abundance of oligonucleotides in DNA sequences. J Comput Biol 8: 151–176

    Article  PubMed  CAS  Google Scholar 

  • Enderlin CS and Meeks JC (1983) Pure culture and reconstitution of the Anthoceros-Nostoc symbiotic association. Planta 158: 157–165

    Article  CAS  Google Scholar 

  • Fiedler G, Arnold M and Maldener I (1998) Sequence and mutational analysis of the devBCA gene cluster encoding a putative ABC transporter in the cyanobacterium Anabaena variabilis ATCC 29413. Biochim Biophys Acta 1375: 140–143

    Article  PubMed  CAS  Google Scholar 

  • Field D and Wills C (1998) Abundant microsatellite polymorphism in Saccharomyces cerevisiae, and the different distributions of microsatellites in eight prokaryotes and S. cerevisiae, result from strong mutation pressures and a variety of selective forces. Proc Natl Acad Sci USA 95: 1647–1652

    Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF and 35 others (1995) Whole genome shotgun sequencing and assembly of Haemophilus influenza Rd. Science 269: 496–512

    PubMed  CAS  Google Scholar 

  • Flores E and Herrero A (1994) Assimilatrory nitrogen metabolism and its regulation. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 487–517. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Frías JE, Flores E and Herrero A (1994) Requirement of the regulatory protein NtcA for the expression of nitrogen assimilation and heterocyst development genes in the cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol 14: 823–832

    PubMed  Google Scholar 

  • Frías JE, Flores E and Herrero A (1997) Nitrate assimilation gene cluster from the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 179: 477–486

    PubMed  Google Scholar 

  • Fukumori F and Saint CP (1997) Nucleotide sequences and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22 (pTDN1). J Bacteriol 179: 399–408

    PubMed  CAS  Google Scholar 

  • Garay-Arroyo A, Colmenero-Flores M, Garciarrubio A and Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275: 5668–5674

    Article  PubMed  CAS  Google Scholar 

  • Golden JW, Robinson SJ and Haselkorn R (1985) Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacterium Anabaena. Nature 314: 419–423

    Article  PubMed  CAS  Google Scholar 

  • Golden JW, Carrasco CD, Mulligan ME, Schneider GJ and Haselkorn R (1988) Deletion of a 55-kilobase-pair DNA element from the chromosome during heterocyst differentiation of Anabaena sp. strain PCC 7120. J Bacteriol 170: 5034–5041

    PubMed  CAS  Google Scholar 

  • Golden SS (1994) Light-responsive gene expression and the biochemistry of the Photosystem II reaction center. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 693–714. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Golden SS, Johnson CH and Kondo T (1998) The cyanobacterial circadian system: a clock apart. Curr Opin Microbiol 1: 669–673

    Article  PubMed  CAS  Google Scholar 

  • Hagen KD and Meeks JC (1999) Biochemical and genetic evidence for participation of devR in a phosphorelay signal transduction pathway essential for heterocyst maturation in Nostoc punctiforme ATCC 29133. J Bacteriol 181: 4430–4434

    PubMed  CAS  Google Scholar 

  • Hagen KD and Meeks JC (2001) The unique cyanobacterial protein OpcA is an allosteric effector of glucose-6-phosphate dehydrogenase in Nostoc punctiforme ATCC 29133. J Biol Chem276: 11477–11486

    Article  PubMed  CAS  Google Scholar 

  • Hebbar PB and Curtis SE (2000) Characterization of devH, a gene encoding a putative DNA binding protein required for heterocyst function in Anabaena sp. strain PCC 7120. J Bacteriol 182: 3572–8351

    Article  PubMed  CAS  Google Scholar 

  • Hess WR, Rocap G, Ting CS and Chisholm SW (2001) The photosynthetic apparatus of Prochlorococcus: Insights through comparative genomics. Photosynth Res 70: 53–72 (this issue)

    Article  PubMed  CAS  Google Scholar 

  • Hoch JA and Silhavy TJ (1995) Preface. In: Hoch JA and Silhavy TJ (eds) Two-Component Signal Transduction, p xv. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Holland D and Wolk CP (1990) Identification and characterization of hetA, a gene that acts early in the process of morphological differentiation of heterocysts. J Bacteriol 172: 3131–3137

    PubMed  CAS  Google Scholar 

  • Huang TC, Lin RF, Chu MK and Chen HM (1999) Organization and expression of nitrogen-fixation genes in the aerobic nitrogen-fixing unicellular cyanobacterium Synechococcus sp. strain RF-1. Microbiology 145: 743–753

    Article  PubMed  CAS  Google Scholar 

  • Hunsucker SW, Tissue BM, Potts Mand Helm RF (2001) Screening protocol for the ultraviolet-photoprotective pigment scytonemin. Anal Biochem 288: 227–230

    Article  PubMed  CAS  Google Scholar 

  • Ireton K, Rudner Z, Siranosian LKJ and Grossman AD (1993) Integration of multiple developmental signals in Bacillus subtilis through the Spo0A trascription factor. Genes Dev 7: 283–294

    PubMed  CAS  Google Scholar 

  • Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, Golden SS, Johnson CH and Kondo T (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281: 1519–1523

    Article  PubMed  CAS  Google Scholar 

  • Johansson C and Bergman B (1994) Reconstitution of the symbiosis of Gunnera manicata Linden: Cyanobacterial specificity. New Phytol 126: 643–652

    Article  Google Scholar 

  • Karlin S, Mrazek J and Campbell AM (1997) Compositional biases of bacterial genomes and evolutionary implications. J Bacteriol 179: 3899–3913

    PubMed  CAS  Google Scholar 

  • Khudyakov I and Wolk CP (1996) Evidence that the hanA gene coding for HU protein is essential for heterocyst differentiation in, and cyanophage A-4(L) sensitivity of, Anabaena sp. strain PCC 7120. J Bacteriol 178: 3572–3577

    PubMed  CAS  Google Scholar 

  • Khudyakov I and Wolk CP (1997) hetC, a gene coding for a protein similar to bacterial ABC protein exporters, is involved in early regulation of heterocyst differentiation in Anabaena sp. strain PCC 7120.J Bacteriol 179: 6971–6978

    PubMed  CAS  Google Scholar 

  • Kobayashi I, Nobusato A, Kobayashi- Takahashi N and Uchiyama I (1999) Shaping the genome-restriction-modification systems as mobile genetic elements. Curr Opin Genet Dev 9: 649–656

    Article  PubMed  CAS  Google Scholar 

  • Kurnst F, Ogasawara N, Moszer I, Albertini AM, Alloni G and 156 others (1997) The complete genome sequence of the Grampositive bacterium Bacillus subtilis. Nature 390: 249–256

    Article  CAS  Google Scholar 

  • Lavine E and Thiel T (1987) UV-inducible DNA repair in the cyanobacteria Anabaena spp. J Bacteriol 58: 511–522

    Google Scholar 

  • Liang J, Scappino L and Haselkorn R (1993) The patB gene product, required for growth of the cyanobacterium Anabaena sp. strain PCC 7120 under nitrogen-limiting conditions, contains ferredoxin and helix-turn-helix domains. J Bacteriol 175: 1697–1704

    PubMed  CAS  Google Scholar 

  • Liang J, Scappino L and Haselkorn R (1992) The patA gene product, which contains a region similar to CheY of Escherichia coli, controls heterocyst pattern formation in the cyanobacterium Anabaena 7120. Proc Natl Acad Sci USA 89: 5655–5659

    Article  PubMed  CAS  Google Scholar 

  • Lynn ME, Bantle JA and Ownby JD (1986) Estimation of gene expression in heterocysts of Anabaena variabilis by using DNA- RNA hybridization. J Bacteriol 167: 940–946

    PubMed  CAS  Google Scholar 

  • Masepohl B, Gorlitz K and Bohme H (1996) Long tandemly repeated repetitive (LTRR) sequences in the filamentous cyanobacterium Anabaena sp. PCC 7120. Biochem Biophys Acta 1307: 26–30

    PubMed  Google Scholar 

  • Matveyev AV, Young, KT, Meng A and Elhai J (2001) DNA methyltransferases of the cyanobacterium Anabaena PCC 7120 Nucleic Acid Res 29: 1491–1506

    Google Scholar 

  • Mazel D, Houmard J, Castets AM and Tandeau de Marsac N (1990) Highly repetitive DNA sequences in cyanobacterial genomes.J Bacteriol 172: 2755–2761

    Google Scholar 

  • Meeks JC (1998) Symbiotic associations between nitrogen-fixing cyanobacteria and plants. BioScience 48: 266–276

    Article  Google Scholar 

  • Merrick MJ and Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59: 604–622

    PubMed  CAS  Google Scholar 

  • Metcalf WW and Wolfe RS (1998) Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88. J Bacteriol 180: 5547–5558

    PubMed  CAS  Google Scholar 

  • Mollenhauer D, Mollenahuer R and Kluge M (1996) Studies on initiation and development of the partner association in Geosiphon pyriforme (Kutz.) v.Wettstein, a unique encocytobiotic system of a fungus (Glomales) and the cyanobacterium Nostoc punctiforme (Kutz.). Hariot Protoplasma 193: 3–9

    Article  Google Scholar 

  • Morand LZ, Cheng RH, Krogmann DW and Ho KK (1994) Soluble electron transfer catalysts of cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 381–407. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Naylor GW, Addlesee HA, Gibson LCD and Hunter CW (1999). The photosynthesis gene cluster of Rhodobacter sphaeroides. Photosynth Res 62: 121–139

    Article  CAS  Google Scholar 

  • Newman J, Karakaya H, Scanlan DJ and Mann NH (1995) A comparison of gene organization in the zwf region of the genomes of the cyanobacteria Synechococcus sp. PCC 7942 and Anabaena sp. PCC 7120. FEMS Lett 133: 187–193

    Article  CAS  Google Scholar 

  • Okuhara H, Matsumura T, Fujita Y and Hase T (1999) Cloning and inactivation of genes encoding ferredoxin-and NADHdependent glutamate synthases in the cyanobacterium Plectonema boryanum. Imbalances in nitrogen and carbon assimilations caused by deficiency of the ferredoxin-dependent enzyme. Plant Physiol 120: 33–42

    Article  PubMed  CAS  Google Scholar 

  • Oren A (2000) Salts and Brines. In: Whitton BA and Potts M (eds) The Ecology of Cyanobacteria. Their Diversity in Time and Space, pp 281–306. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Pentecost A and Whitton BA (2000) Limnestones. In: Whitton BA and Potts M (eds) The Ecology of Cyanobacteria. Their Diversity in Time and Space, pp 257–279. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Potts M, Angelon SV, Ebel RE and Bassam 6D (1992) Myoglobin in a cyanobacterium. Science 256: 1690–1692

    PubMed  CAS  Google Scholar 

  • Ramaswamy KS, Carrasco CD, Fatma T and Golden JW (1997) Cell-type specificity of the Anabaena fdxN-element rearrangement requires xisH and xisI. Mol Microbiol 23: 1241–1249

    Article  PubMed  CAS  Google Scholar 

  • Rippka R and Herdman M (1992) Pasteur Culture Collection of Cyanobacterial Strain in Axenic Culture. Institut Pasteur, Paris, France

    Google Scholar 

  • Robinson NJ, Rutherford JC, Pocock MR and Cavet JS (2000) Metal metabolism and toxicity: repetitive DNA. In: Whitton BA and Potts M (eds) The Ecology of Cyanobacteria. Their Diversity in Time and Space, pp 443–463. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Sakamoto T, Inoue- Sakamoto K and Bryant DA (1999) A novel nitrate/ nitrite permease in the marine cyanobacterium Synechococcus sp. strain PCC 7002. J Bacteriol 181: 7363–7372

    PubMed  CAS  Google Scholar 

  • Sato N (1994) A cold-regulated cyanobacterial gene cluster encodes RNA-binding protein and ribosomal protein S21. Plant Mol Biol 24: 819–823

    Article  PubMed  CAS  Google Scholar 

  • Schmetterer G (1994) Cyanobacterial respiration. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 409–435. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Schmitz O, Katayama M, Williams SB, Kondo T and Golden SS (2000) CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science 289: 765–768

    Article  PubMed  CAS  Google Scholar 

  • Schopf JW (2000) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA and Potts M (eds) The Ecology of Cyanobacteria. Their Diversity in Time and Space, pp 13–35. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Sitachitta N, Marquez BL, Williamson RT, Rossi J, Roberts MA, Gerwick WH, Nguyen V-A and Willis CL (2000) Biosynthetic pathway and origin of the chlorinated methyl group in barbamide and dechlorobarbamide, metabolites from the marine cyanobacterium Lyngbya majuscula. Tetrahedron 56: 9103–9113

    Article  CAS  Google Scholar 

  • Smith AJ (1982) Modes of cyanobacterial carbon metabolism. In: Carr NG and Whitton BA (eds) The Biology of Cyanobacteria, pp 47–85. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Stover CK, Pham XQ, Ersin AL, Mizoguchi, SD and 28 others (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959–964

    Article  PubMed  CAS  Google Scholar 

  • Summers ML, Wallis JG, Campbell EL and Meeks JC (1995) Genetic evidence of a major role for glucose-6-phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC 29133. J Bacteriol 177: 6184–6194

    PubMed  CAS  Google Scholar 

  • Tamagnini P, Costa JL, Almeida L, Oliveira MJ, Salema R and Lindblad P (2000) Diversity of cyanobacterial hydrogenases, a molecular approach. Curr Microbiol 40: 356–361

    Article  PubMed  CAS  Google Scholar 

  • Tandeau de Marsac N (1977) Occurrence and nature of chromatic adaptation in cyanobacteria. J Bacteriol 130: 82–91

    PubMed  CAS  Google Scholar 

  • Tandeau de Marsac N and Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: New steps towards molecular mechanisms. FEMS Microbiol Rev 104: 119–190

    Article  CAS  Google Scholar 

  • Thiel T (1996) Isolation and characterization of the vnfEN genes of the cyanobacterium Anabaena variabilis. J Bacteriol 178: 4493–4499

    PubMed  CAS  Google Scholar 

  • Thiel T and Pratte B (2001) Effect on heterocyst differentiation of nitrogen fixation in vegetative cells of the cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 183: 280–286

    Article  PubMed  CAS  Google Scholar 

  • Thiel T, Lyons EM and Erker JC (1997) Characterization of genes for a second Mo-dependent nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 179: 5222–5225

    PubMed  CAS  Google Scholar 

  • Thiel T, Lyons EM and Thielemeier J (1998) Organization and regulation of two clusters of nif genes in the cyanobacterium Anabaena variabilis. In: Peschek GA, Loeffelhardt W and Schmetterer G (eds) Phototrophic Prokaryotes, pp 517–521. Plenum Press, New York

    Google Scholar 

  • Wang Q, Li H and Post AF (2000) Nitrate assimilation genes of the marine diazotrophic, filamentous cyanobacterium Trichodesmium sp. strain WH9601. J Bacteriol 182: 1764–1767

    Article  PubMed  CAS  Google Scholar 

  • Wolk CP (2000) Heterocyst formation in Anabaena. In: Braun Y and Shimkets LJ (eds) Prokaryotic Development, pp 83–103. American Society of Microbiology, Washington DC

    Google Scholar 

  • Wolk CP, Ernst E and Elhai J (1994) Heterocyst metabolism and development. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 769–823. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Wong FCY and Meeks JC (2001) The hetF gene product is essential to heterocyst differentiation and affects HetR function in the cyanobacterium Nostoc punctiforme. J Bacteriol 183: 2654–2661

    Article  PubMed  CAS  Google Scholar 

  • Wright D, Prickett T, Helem RF and Potts, M (2001) Form species Nostoc commune (Cyanobacteria). Int J Sys Evol Microbiol 51: 1839–1852

    CAS  Google Scholar 

  • Yeh K-O, Wu S-H, Murphy JT and Lagarias JC (1997) A cyanobacterial phytochrome two-component light sensory system. Science277: 1505–1508

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS and Golden JW (1998) Heterocyst pattern formation controlled by a diffusible peptide. Science 282: 935–938

    Article  PubMed  CAS  Google Scholar 

  • Zhou R, Wei X, Jiang N, Li H, Dong Y, Hsi KL and Zhao J (1998) Evidence that HetR protein is an unusual serine-type protease. Proc Natl Acad Sci USA 95: 4959–4963

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Kong R and Wolk CP (1998) Regulation of hepA of Anabaena sp. strain PCC 7120 by elements 5′ from the gene and by hepK. J Bacteriol 180: 4233–4242

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Meeks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meeks, J.C., Elhai, J., Thiel, T. et al. An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynthesis Research 70, 85–106 (2001). https://doi.org/10.1023/A:1013840025518

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013840025518

Navigation