Skip to main content
Log in

Role of Opioid Peptides in Behavior of Invertebrates

  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Opioid peptides have been revealed in representatives of practically all large taxonomic groups of invertebrates, and the opiate receptors are found even in unicellulars. The opioid system seems to belong to the evolutionary ancient signal systems. The comparative data indicate that the most conservative and ancient function of opioids is control of the adequate level of protective reactions. In the infusorian Stentor the opiate ligands suppress a contractile response to mechanical stimulation, i.e., the protective behavior. In all studies multicellular invertebrates, agonists also suppress protective behavior, whereas antagonists produce opposite effects. This initially signal meaning of opioids might have become a basis for divergent development of their functions in evolution. Already in higher invertebrates, molluscs and arthropods, many functions of opioids, for example, stress-induced analgesia, regulation of feeding and mating behavior, of social aggression, are similar to those in vertebrates. It is suggested that the main events in formation of functions of the endogenous opioid system have occurred in the lower invertebrates that have remained so far the least studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Harrison, L.M., Kastin, A.J., Weber, J., Banks, W., Hurley, D., and Zadina, J., The Opiate System in Invertebrates, Peptides, 1994, vol. 15, pp. 1309–1329.

    Google Scholar 

  2. Nagabhushanam, R., Sarojini, R., Reddy, P.S., Devi, M., and Fingerman, M., Opioid Peptides in Invertebrates: Localization, Distribution and Possible Functional Roles, Current Science, 1995, vol. 69, pp. 659–671.

    Google Scholar 

  3. Olson, G.A., Olson, R.D., and Kastin, J., Endogenous Opiates, 1992, Peptides, 1993, vol. 14, pp. 1339–1378.

    Google Scholar 

  4. Kavaliers, M., Novelty-Induced Opioid Analgesia in the Terrestrial Snail, Cepaea nemoralis, Physiol. Behav., 1988, vol. 42, pp. 29–32.

    Google Scholar 

  5. Kavaliers, M., Evolutionary and Comparative Aspects of Nociception, Brain Res. Bull., 1988, vol. 21, pp. 923–931.

    Google Scholar 

  6. Kavaliers, M., Hirst, M., and Teskey, G.C., A Functional Role for an Opiate System in Snail Thermal Behavior, Science, 1983, vol. 330, pp. 90–93.

    Google Scholar 

  7. Kavaliers, M., Hirst, M., and Teskey, G., The Effects of Opioid and FMRF-Amide Peptides on Thermal Behaviour in the Snail, Neuropharm., 1984, vol. 24, pp. 621–626.

    Google Scholar 

  8. Kavaliers, M. and Hirst, M., Naloxone-Reversible Stress-Induced Feeding and Analgesia in the Slug Umax maximus, Life Sci., 1985, vol. 38, pp. 203–209.

    Google Scholar 

  9. Stefano, G.B., Sardesai, R., Ndubuka, C., et al., Opiates Influence Food Consumption and Thermal Responsiveness in the Land Snails Helix aspersa and Helix pomatia, Neurobiology: Molluscan Models, Boer, H.H., Geraerts, W.P.M., and Joosse, J., Eds., Amsterdam: North Holland, 1987, pp. 261–264.

    Google Scholar 

  10. Dalton, L. and Widdowson, P., The Involvement of Opioid Peptides in Stress-Induced Analgesia in the Slug Arion ater, Peptides, 1989, vol. 10, pp. 9–13.

    Google Scholar 

  11. Kavaliers, M., Evidence for Opioid and Non-Opioid Forms of Stress-Induced Analgesia in the Snail, Cepaea nemoralis, Brain Res., 1987, vol. 410, pp. 111–115.

    Google Scholar 

  12. Stefano, G., Cadet, P., Dokun, A., and Scharrer, B., A Neuroimmunoregulatory-Like Mechanism Responding to Electrical Shock in the Marine Bivalve Mytilus edulis, Brain Behav. Immun., 1991, vol. 4, pp. 323–329.

    Google Scholar 

  13. Dyakonova, V.E., Elofsson, R., Carlberg, M., and Sakharov, D.A., Complex Avoidance Behaviour and Its Neurochemical Regulation in the Land Snail Cepaea nemoralis, Gen. Pharmac., 1995, vol. 26, pp. 773–777.

    Google Scholar 

  14. Lukowiak, K., Goldberg, J., Colmers, W., and Edstrom, J., Peptide Modulation of Neuronal Activity and Behavior in Aplysia, CRC Handbook of Comparative Opioid and Related Neuropeptide Mechanisms, Stefano, G.B., Ed., Boca Raton. Florida: CRC, 1986, pp. 129–144.

    Google Scholar 

  15. Leonard, J.L. and Martiner-Padron, M., Does Altering Identified Gill Motor Neuron Activity Alter Gill Behavior in Aplysia?, Molluscan Neurobiology, Amsterdam; Oxford; New York: North-Holland, 1991.

    Google Scholar 

  16. Valeggia, C., Fernandez-Duque, E., and Maldonado, H., Danger Stimulus-induced Analgesia in the Crab Chasmagnathus granulatus, Brain Res., 1989, vol. 481, pp. 304–308.

    Google Scholar 

  17. Kavaliers, M., Guglick, A., Hirst, M., Opioid Involvement in the Control of Feeding in an Insect, American Cockroach, Life Sci., 1987, vol. 40, pp. 665–672.

    Google Scholar 

  18. Kavaliers, M. and Hirst, M., FMRFamide Suppresses Kappa Opiate Induced Feeding in the Mouse, Peptides, 1985, vol. 6, pp. 847–849.

    Google Scholar 

  19. Kavaliers, M. and Hirst, M., FMRFamide, a Putative Endogenous Opiate Antagonis: Evidence from Suppression of Defeat-Induced Analgesia and Feeding in Mice, Neuropeptides, 1985, vol. 6, pp. 485–494.

    Google Scholar 

  20. Wood, D.C., Electrophysiological Studies of the Protozoan, Stentor coeruleus, J. Neurobiol., 1970, vol. 1, pp. 363–377.

    Google Scholar 

  21. Neresheimer, E.R., Ñber die Höhe histologischer Differenzierung bei heterotrichen Ciliaten, Arch. Protistenk., 1903, vol. 28, pp. 363–388.

    Google Scholar 

  22. Marino, M.J. and Wood, D.C., β-Endorphin Modulates a Mechanoreceptor Channel in the Protozoan Stentor, J. Comp. Physiol. A., 1993, vol. 173, pp. 233–240.

    Google Scholar 

  23. Flanagan, T. and Zipser, B., Opioid-Peptide and Substance P Immunoreactivity in Cytological Preparations and Tissue Homogenates of the Leech, CRC Handbook of Comparative Opioid and Related Neuropeptide Mechanisms, Stefano, G.B., Ed., Boca Raton. Florida: CRC, 1986, vol. 1, pp. 165–180.

    Google Scholar 

  24. Stefano, G., Hiripi, L, Rozsa, K., and Salanki, J., Behavoural Effects of Morphine on the Land Snail Helix pomatia. Demonstration of Tolerance, Adv. Physiol. Sci., 1980, vol. 23, pp. 285–294.

    Google Scholar 

  25. Dyakonova, V.E., Dyakonova, T.L., and Sacharov, D.A., Endogenous Opioids of Model Gastropods: Coordination of Motor Programs of Feeding and Protective Behavior of the Freshwater Pond Snail Lymnaea stagnalis, Biol. Memdrany, 1992, vol. 10.11, pp. 1874–1876.

    Google Scholar 

  26. Dyakonova, V.E. and Sakharov, D.A., Participation of Endogenous Opioid System in Regulation of Feeding and Protective Behavior of the Mollusc Lymnaea stagnalis, Zh. Vyssh. Nerv. Deyat., 1994, vol. 44, pp. 316–322.

    Google Scholar 

  27. Zakharov, I.S., Defensive Behavior of the Land Snail, Zh. Vyssh. Nerv. Deyat., 1992, vol. 42, pp. 1156–1169.

    Google Scholar 

  28. Balaban, P., A System of Command Neurons in Snail's Escape Behaviour, Acta Neurobiol. Exp., 1979, vol. 39, pp. 97–107.

    Google Scholar 

  29. Pivovarov, A.S., Choline Receptors in Neurons of Land Snail: Identification, Plasticity and Its Regulation by Opioids and Secondary Messengers, Zh. Vyssh. Nerv. Deyat., 1992, vol. 42, pp. 1271–1286.

    Google Scholar 

  30. Pivovarov, A.S., Diversely Directed Modulation by Opiate mu-and kappa-Agonists of Plasticity of Choline Receptors in Neurons PPa3 and Lpa3 of the Land Snail, Zh. Vyssh. Nerv. Deyat., 1993, vol. 43, pp. 826–836.

    Google Scholar 

  31. Sakharov, D.A., Integration of High Threshold Wholebody Withdrawal in the Pond Snail, Signal Molecules and Behaviour, Winlow, W., Vinogradova, O.S., and Sakharov, D.A., Eds., Manchester: Univ., 1991, pp. 124–130.

    Google Scholar 

  32. Dyakonova, T.L., Interaction of Opioid Peptides and Monoamines in the Mechanism of Respiratory Behavior of the Pulmonate Mollusc: A Study on Isolated Neurons, Dokl. Akad. Nauk SSSR, 1989, vol. 308, pp. 1264–1269.

    Google Scholar 

  33. Dyakonova, T.L., A Combined Action of Enkephalin and Serotonin Causes Occurrence of Electrotonic Connection in the System of Helix Respiratory Neurons, Dokl. Akad. Nauk SSSR, 1991, vol. 317, pp. 754–759.

    Google Scholar 

  34. Lozada, M., Romano, A., and Maldonado, H., Effect of Morphine and Naloxone on a Defensive Response of the Crab Chasmagnatus granulatus, Pharmacol. Biochem. Behav., 1988, vol. 30, pp. 635–640.

    Google Scholar 

  35. Maldonado, H., Romano, A., and Lozada, M., Opioid Action on Response Level to a Dangerous Stimul in the Crab (Chasmagnatus granulatus), Behav. Neurosci., 1989, vol. 103, pp. 1139–1143.

    Google Scholar 

  36. Tomsic, D., Maldonado, H., and Rakitin, A., Morphine and GABA: Effects on Perception, Escape Response and Long-Term Habituation to a Danger Stimulus in the Crab Chasmagnatus, Brain Res. Bull., 1991, vol. 26, pp. 699–706.

    Google Scholar 

  37. Bergamo, P., Maldonado, H., and Miralto, A., Opiate Effect on the Threat Display in the Crab Carcinus mediterrarteus, Pharmacol. Biochem. Behav., 1992, vol. 42, pp. 323–326.

    Google Scholar 

  38. Martinez, E.A., Vassel, D., and Stefano, G.D., Opioid Potentiated Chromatophorotropin Regulation of Pigment Migration in the Land Crab Gecarinus lateralis, Comp. Biochem. Physiol., 1986, vol. 83C, pp. 77–82.

    Google Scholar 

  39. Zabala, N. and Gomez, M., Morphine Analgesia, Tolerance and Addiction in the Cricket, Pteronemobius, Pharmacol. Biochem. Behav., 1991, vol. 40, pp. 887–891.

    Google Scholar 

  40. Dyakonova, V.E., Sakharov, D.A., and Schuermann, F.-W., Effects of Serotonergic and Opioidergic Drugs on Escape Behavior and Social Status of Male Crickets, Naturwissenschaften, 1999, vol. 86, pp. 435–437.

    Google Scholar 

  41. Zabala, N., Miralto, A., Maldonado, H., Nunez, J., Jaffe, K., and Calderon, L., Opiate Receptor in Praying Mantis: Effect of Morphine and Naloxone, Pharmacol. Biochem. Behav., 1984, vol. 20, pp. 683–687.

    Google Scholar 

  42. Nunez, J., Maldonado, H., Miralto, A., and Balderrama, N., The Stinging Response of the Honeybee. Effects of Morphine, Naloxone and Some Opioid Peptides, Pharmacol. Biochem. Behav., 1983, vol. 19, pp. 921–924.

    Google Scholar 

  43. Josefsson, J.-O. and Jahansson, P., Naloxone-Reversible Effects of Opioids on Pinocytosis in Amoeba proteus, Nature, 1979, vol. 282, pp. 78–80.

    Google Scholar 

  44. DeJesus, S. and Renaud, F.L., Phagocytosis in Tetrahymena thermophila: Naloxonereversible Inhibition by Opiates, Comp. Biochem. Physiol., 1989, vol. 92C, pp. 1139–1142.

    Google Scholar 

  45. Alumets, J., Hakanson, R., Sundler, F., and Thorell, J., Neuronal Localization of Immunoreactive Enkephalin and β-Endorphin in the Earthworm, Nature, 1979, vol. 279, pp. 805–806.

    Google Scholar 

  46. Rzasa, P., Kaloustian, K., and Prokop, E., Immonochemical Evidence for Met-Enkephalin and Leu-Enkephalin-Like Peptides in Tissues of the Eathworm Lumbricus terrestris, Comp. Biochem. Physiol., 1984, vol. 77C, pp. 345–350.

    Google Scholar 

  47. Kaloustan, K.V. and Rzasa, R.J., Immunochemical Evidence on the Occurence of Opioid-and Gastrin-Like Peptides in Tissues of the Earthworm Lumbricus terrestris, CRC Handbook of Comparative Opioid and Related Neuropeptide Mechanisms, Stefano, G.B., Ed., Boca Raton. Florida: CRC, 1986, vol. 1, pp. 73–88.

    Google Scholar 

  48. Kavaliers, M., Hirst, M., and Teskey, G., Opioid-Induced Feeding in the Slug, Limax maximus, Physiol. Behav., 1984, vol. 33, pp. 765–767.

    Google Scholar 

  49. Kavaliers, M. and Hirst, M., Slugs and Snails and Opiate Tales: Opioids and Feeding in Invertebrates, Fed. Pros., 1987, vol. 46, pp. 168–172.

    Google Scholar 

  50. Wong, M., Delaney, K., and Gelperin, A., Opiate Agonists Activate Feeding in Limax: Comparision of in vivo and in vitro Effects, Behav. Neurosci., 1991, vol. 105, pp. 15–24.

    Google Scholar 

  51. Kavaliers, M., Rangley, B., Teskey, G., and Hirst, M., Mu and Kappa Opiate Agonists Modulate Feeding Behaviour in the Slug Limax maximus, Pharmacol. Biochem. Behav., 1986, vol. 24, pp. 561–566.

    Google Scholar 

  52. Sakharov, D.A. and Elofsson, R., Peripheral Localization of Enkephalin-Immunoreactive Neurons in the Pteropod Mollusc, Dokl. Akad. Nauk SSSR, 1991, vol. 319, pp. 502–504.

    Google Scholar 

  53. Norekyan, T.P. and Sakharov, D.A., Mechanoreception in the Pteropod Mollusc Clione limacina: Tactile Inputs Are Blocked by Opiate Antagonist, Sensornye Systemy, 1991, vol. 5, no. 3, pp. 5–11.

    Google Scholar 

  54. Nishiitsutsuji-Uwo, J., Endo, Y., Takeda, M., and Saito, H., Brain-Gut Peptides in the Cockroach with Special Reference to Midgut, CRC Handbook of Comparative Opioid and Related Neuropeptide Mechanisms, Stefano, G.B., Ed., Boca Raton. Florida: CRC, 1986, pp. 81–90.

    Google Scholar 

  55. Stefano, G., Scharrer, B., and Assanah, P., Characterization and Localization of Opioid Binding Sites in the Midgut of the Insect Leucophaea maderae (Blatteria), Brain Res., 1982, vol. 253, pp. 205–212.

    Google Scholar 

  56. Duve, H. and Thorpe, A., Mapping of Enkephalin-Related Peptides in the Nervous System of the Blowfly Calliphora vomitoria, and Their Colocalization with CCK-and PP-Like Peptides, Cell Tissue Res., 1988, vol. 251, pp. 399–415.

    Google Scholar 

  57. Duve, H. and Thorpe, A., Distribution and Functional Significance of Met-Enkephalin-Arg-Phe and Met-Enkephalin-Arg-Gly-Leu-Like Peptides in the Blowfly Calliphora vomitoria. II. Immunochemical Mapping of Neuronal Pathways in the Retrocerebral Complex and Thoraic Ganglia, Cell Tissue Res., 1989, vol. 259, pp. 147–157.

    Google Scholar 

  58. Thorpe, A. and Duve, H., Morphological, Biochemical, and Physiological Studies on Insect Enkephalins, Progress in Comparative Endocrinology, Epple, A., Scanes, C.G., and Stetson, M.H., Eds., Wiley-Liss, Inc., 1990, pp. 293–299.

  59. Kavaliers, M. and Hirst, M., Inhibitory Influences of FMRFamide and PLG on Stress-Induced Analgesia and Activity, Brain Res., 1986, vol. 372, pp. 370–374.

    Google Scholar 

  60. Venturini, G., Carolei, A., Palladini, G., Margotta, V., and Cerbo, R., Naloxone Enhances cANP Levels in Planaria, Comp. Biochem. Physiol., 1981, vol. 69C, pp. 105–108.

    Google Scholar 

  61. Venturini, G., Carolei, A., Palladini, G., Margotta, V., and Lauro, M., Radioimmunological and Immunocytochemical Demonstration of Met-Enkephalin in Planaria, Comp. Biochem. Physiol., 1983, vol. 74C, pp. 23–25.

    Google Scholar 

  62. Kaiser, F., Zool. Jahrb. Allg. Zool. Physiol., 1954, pp. 59–65.

  63. Nepomnyashchikh, V.A., Naloxone Acts on Duration and Frequency of Medicine Leech's Behavioral Patterns in the “Open Field” Test, Simple Nervous Systems, Abstracts from the Regional Meeting of ISIN, 1994, Pushchino, Russia, p. 28.

    Google Scholar 

  64. Dyakonova, V.E., Locomotor Neurons of Lymnaea stagnalis Are Activated Tonically by Endogenous Opioid System, Zh. Vyssh. Nerv. Deyat., 1998, vol. 48, no. 1, pp. 113–120.

    Google Scholar 

  65. Martinez, E., Murray, M., Leung, M., and Stefano, G., Evidence for Dopaminergic and Opioid Involvement in the Regulation of Locomotor Activity in the Land Crab Gecarcinus lateralis, Comp. Biochem. Physiol., 1988, vol. 90C, pp. 89–93.

    Google Scholar 

  66. Ford, R., Jacbon, D., Tetrault, L, Torres, J., Assanah, P., Harper, L., Leung, M., and Stefano, G., A Behavioural Role for Enkephalins in Regulating Locomotor Activity in the Insect Leucophaea maderae: Evidence for High Affinity Kappa-Like Binding Sites, Comp. Biochem. Physiol., 1986, vol. 85C, pp. 61–66.

    Google Scholar 

  67. Dyakonova, V.E. and Sakharov, D.A., Neurotransmitter Basis of Behavior of Mollusc: Control of Choice between Exploratory and Defensive Response to Presentation of an Unknown Object, Zh. Vyssh. Nerv. Deyat., 1994, vol. 44, no. 3, pp. 526–531.

    Google Scholar 

  68. Quackenbush, L S. and Fingerman, M., Regulation of Neurohormone Release in the Fiddler Crab Uca pugilator: Effects of Gamma Aminobutyric Acid, Octopamine and Beta-Endorphin, Comp. Biochem. Physiol., 1984, vol. 79C, pp. 77–84.

    Google Scholar 

  69. Nepomnyashchikh, V.A. and Podgornyi, K.A., Formation of Regulated Behavior in Larvae of Faggot Worm at a Random Sequence of Stimuli, Zh. Obshch. Biol., 1994, vol. 55, pp. 328–336.

    Google Scholar 

  70. Dyakonova, V.E., Sakharov, D.A., and Schuermann, F.-W., Disinhibition by Naloxone of Social Aggression in Female and Subordinate Male Crickets, Acta Biol. Hung., 2000, vol. 51, pp. 363–367.

    Google Scholar 

  71. Davenport, A. and Evans, P., Sex-Related Differences in the Concentration of Met-Enkephalin-Like Immunoreactivity in the Nervous System of an Insect, Schistocerca gregaria, Revealed by Radioimmunoassay, Brain Res., 1986, vol. 383, pp. 319–322.

    Google Scholar 

  72. Sakharov, D.A., Multiplicity of Neurotransmitters: Functional Significance, Zh. Evol. Biokhim. Fiziol., 1990, vol. 26, pp. 733–741.

    Google Scholar 

  73. Sakharov, D.A., Integrative Function of Serotonin in Primitive Metazoa, Zh. Obshch. Biol., 1990, vol. 51, pp. 437–449.

    Google Scholar 

  74. Maksimova, O.A. and Balaban, P.M., Two Modulatory Inputs Exert Reciprocal Reinforcing Effects on Synaptic Input of Premotor Interneurons for Withdrawal in Terrestrial Snails, Abstr. Conf. “Conceptual Advances in the Studies of Associative Learning and Memory,” Moscow, 1999, p. 67.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyakonova, V.E. Role of Opioid Peptides in Behavior of Invertebrates. Journal of Evolutionary Biochemistry and Physiology 37, 335–347 (2001). https://doi.org/10.1023/A:1012910525424

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012910525424

Keywords

Navigation