Skip to main content
Log in

Quantitative Analysis of the Timing of the Origin and Diversification of Extant Placental Orders

Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Fossil evidence is consistent with origination and diversification of extant placental orders in the early Tertiary (Explosive Model), and with the possibility of some orders having stem taxa extending into the Cretaceous (Long Fuse Model). Fossil evidence that 15 of 18 extant placental orders appeared and began diversification in the first 16 m.y. of the Cenozoic is, however, at odds with molecular studies arguing some orders diversified up to 40 m.y. earlier in the Early Cretaceous (Short Fuse Model). The quality of the fossil record was assessed by tabulating localities of all mammals in the last 105 m.y. Global locality data (except Africa) for 105 m.y. of eutherian evolution indicate discernible biogeographic patterns by the last 15 m.y. of the Cretaceous. Eutherian genera increase from 11 in latest Cretaceous to 139 in earliest Tertiary, although both are represented by about 50 localities. Yet even in the Late Cretaceous of North America and Asia where eutherians are abundant, none of the 18 extant orders are definitely known. A series of Monte Carlo simulations test whether the rapid appearance of most mammalian orders is statistically significant, and if so, whether it is a radiation event or an artifact of a limited fossil record. Monte Carlo tests affirm that the clustering of appearances in the early Cenozoic is statistically significant. Quantitative analysis of the locality data suggests that the number of genera described is a function of the number of localities sampled. In contrast, the number of orders is not a simple function of localities and thus does not appear to be limited by localities. A second set of Monte Carlo simulations confirms that the increase in orders cannot be explained by the limited number of localities sampled. Even for best-fit simulations, the observed pattern of ordinal appearances is steeper than expected under a variety of null models. These quantitative analyses of the fossil record demonstrate that the rapid ordinal appearances cannot be ascribed to limited Late Cretaceous sample sizes; thus, early Tertiary ordinal diversification is real. Although the fossil record is incomplete, it appears adequate to reject the hypothesis that orders of placentals began to diversify before the K/T boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

LITERATURE CITED

  • Alroy, J. (1999). The fossil record of North American mammals: Evidence for a Paleocene evolutionary radiation. Syst.Biol. 48: 107–118.

    Google Scholar 

  • Archibald, J. D. (1996). Fossil evidence for a Late Cretaceous origin of “hoofed” mammals. Science 272: 1150–1153.

    Google Scholar 

  • Archibald, J. D. (1998). Archaic ungulates (“Condylartha”). In: Evolution of Tertiary Mammals of North America.Volume 1.Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals, C. Janis, K. Scott, and L. Jacobs, eds., pp. 292–331, Cambridge University Press, Cambridge.

    Google Scholar 

  • Benton, M. J., Wills, M. A., and Hitchin, R. (2000). Quality of the fossil record through time. Nature 403: 534–537.

    Google Scholar 

  • Bonaparte, J. F. (1990). New Late Cretaceous mammals from the Los Alamitos Formation, northern Patagonia. Nat.Geogr.Res.6: 63–93.

    Google Scholar 

  • Bonaparte, J. F., Van Valen, L. M., and Kramartz, A. (1993). La fauna local de Punta Peligro, Paleoceno Inferior, de la Provincia del Chubut, Patagonia, Argentina. Evol.Monogr. 14: 1–61.

    Google Scholar 

  • Bleiweiss, R. (1998). Fossil gap analysis supports early Tertiary origin of trophically diverse avian orders. Geology 26: 323–326.

    Google Scholar 

  • Bromham, L., Rambaut, A, and Harvey, P. H. (1996). Determinants of rate in mammalian DNA sequence evolution. J.Mol.Evol. 43: 610–621.

    Google Scholar 

  • Bromham, L., Phillips, M. J., and Perry, D. (1999). Growing up with dinosaurs: Molecular dates and mammalian radiation. TREE 14: 113–118.

    Google Scholar 

  • Bromham, L., Penny, D., Rambaut, A., and Hendy, M. D. (2000). The power of relative rate tests depends on the data. J.Mol.Evol. 50: 296–301.

    Google Scholar 

  • Butler, P. M. (1990). Early trends in the evolution of tribosphenic molars. Biol.Rev. 65:529–552.

    Google Scholar 

  • Butler, P. M. (1995). Fossil Macroscelidea. Mammal Rev. 25(1&2):3–14.

    Google Scholar 

  • Carroll, R. L. (1997). Patterns and Processes of Vertebrate Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Cifelli, R. L. (1999). Tribosphenic mammal from the North American Early Cretaceous. Nature 401: 363–366.

    Google Scholar 

  • Cleveland, W. S. (1993). Visualizing Data. Hobart Press, Summit, NJ.

    Google Scholar 

  • Cooper, A., and Fortey. R. (1998a). Evolutionary explosions and the phylogenetic fuse. TREE 13: 151–156.

    Google Scholar 

  • Cooper, A., and Fortey, R. (1998b). Shortening the phylogenetic fuse, reply. TREE 13: 323–324 (1998).

    Google Scholar 

  • Cooper, A. and Penny, D. (1997). Mass survival of birds across the Cretaceous-Tertiary boundary: Molecular evidence. Science 275: 1109–1113.

    Google Scholar 

  • de Queiroz, K., and Gauthier, J. (1994). Toward a phylogenetic system of biological nomenclature. TREE 9: 27–31.

    Google Scholar 

  • Flynn, J. J., and Wyss, A. R. (1998). Recent advances in South American mammalian paleontology. TREE 13: 449–454.

    Google Scholar 

  • Foote, M., Hunter, J. P. Janis, C. M. and Sepkoski, J. J., Jr. (1999). Evolutionary and preservational constraints on origins of biologic groups: Divergence times of eutherian mammals. Science 283: 1310–1314.

    Google Scholar 

  • Gatesy, J., Hayashi, C., Cronin, M., and Arctander, P. (1996). Evidence from milk casein genes that cetaceans are close relatives of hippopotamid artiodactyls. Mol.Biol.Evol.13: 954–963.

    Google Scholar 

  • Gheerbrant, E., and Astibia, H. (1994). EsUn nouveau mammifère du Maastrichtien de La'no (Pays Basque espagnol). EsCompt.Rend., Série II 318: 1125–1131.

    Google Scholar 

  • Gheerbrant, E., Sudre, J., and Cappetta, H. (1996). A Palaeocene proboscidean from Morocco. Nature 383: 68–70.

    Google Scholar 

  • Gingerich, P. D. (1977). Patterns of evolution in the mammalian fossil record. In: Patterns of Evolution as Illustrated by the Fossil Record, A Hallam,, pp. 469–500, Elsevier, Amsterdam.

  • Gingerich, P. D. and Uhen, M. D. (1998). Likelihood estimation of the time of origin of Cetacea and the divergence of Cetacea and Artiodactyla. Palaeont.Electron. 1: 1–28.

    Google Scholar 

  • Gnanadesikan, R. (1977). Methods for Statistical Analysis of Multivariate Observations. John Wiley & Sons, New York.

    Google Scholar 

  • Godthelp, H., Archer, M., Cifelli, R. L. Hand, J. S., and Gilkeson, C. F. (1992). Earliest known Australian Tertiary mammal fauna. Nature 356: 514–516.

    Google Scholar 

  • Gotelli, N. J., and Graves, G. R. (1996). Null Models in Ecology. Smithsonian Institution Press, Washington.

    Google Scholar 

  • Gould, S. J., Raup, D. M., Sepkoski, J. J., Schopf, T. J. M., and Simberloff, D. S. (1977). The shape of evolution: A comparison of real and random clades. Paleobiology 3: 23–40.

    Google Scholar 

  • Hartenberger, J.-L. (1986). Hypothèse paléontologique sur l'origine des Macroscelidea. Compt.Rend., Série II 302(5):247–249.

    Google Scholar 

  • Huelsenbeck, J. P. Larget, B, and Swofford, D. (2000).A compound Poisson process for relaxing the molecular clock. Genetics 154: 1879–1892.

    Google Scholar 

  • Kielan-Jaworowska, Z., and Dashzeveg, D. (1989). Eutherian mammals from the Early Cretaceous of Mongolia. Zool.Scripta 18: 347–355.

    Google Scholar 

  • Kielan-Jaworowska, Z., Cifelli, R. L. and Luo, Z. (1998). Alleged Cretaceous placental from down under. Lethaia 31: 267–268.

    Google Scholar 

  • Krause, D. W., Prasad, G. V. R., von Koenigswald, W., Sahni, A., and Grine, F. E. (1997). Cosmopolitanism among Gondwanan Late Cretaceous mammals. Nature 390: 504–507.

    Google Scholar 

  • Kumar, S., and Hedges, B. 1998. A molecular tree for vertebrate evolution. Nature 392: 917–919.

    Google Scholar 

  • Lillegraven, J. A. (1969). Latest Cretaceous mammals of upper part of Edmonton Formation of Alberta, Canada, and review of marsupial-placental dichotomy in mammalian evolution. Univ.Kansas, Paleont.Contri, 12):1–122.

    Google Scholar 

  • Manly, B. J. F. (1997). Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman & Hall, London.

    Google Scholar 

  • McKenna, M. C., and Bell, S. K. (1997).Classification of Mammals Above the Species Level. Columbia University Press, New York.

    Google Scholar 

  • Nessov, L. A., Archibald, J. D., and Kielan-Jaworowska, Z. (1998). Ungulate-like mammals from the Late Cretaceous of Uzbekistan and a phylogenetic analysis of Ungulatomorpha. Bull.Carnegie Mus.Nat.Hist. 34: 40–88.

    Google Scholar 

  • Novacek, M. J. (1992). Mammalian phylogeny: Shaking the tree. Nature 356: 121–125.

    Google Scholar 

  • Novacek, M. J., Gao, K., Norell, M. A., and Rougier, G. (1998). Ghost lineages, phylogeny, and ranges of selected vertebrate lineages across the K ?T boundary. JVP Abst. 18, suppl.to 3: 67A.

    Google Scholar 

  • Novacek, M. A., Rougier, G. W., Dashzeveg, D., and McKenna, M.C. (2000). New eutherian mammal from the Late Cretaceous of Mongolia and its bearing on the origin of the modern placental radiation. JVP Abst.20, suppl.to 3: 61A.

    Google Scholar 

  • Omland, K.E. (1997). Correlated rates of molecular and morphological evolution. Evolution 51: 1381–1393.

    Google Scholar 

  • Rich, T. H., Vickers-Rich, P., Constantine, T. A. Flannery, Kool, L., and van Klaveren, N. (1997). A tribosphenic mammal from the Mesozoic of Australia. Science 278: 1438–1442.

    Google Scholar 

  • Rougier, G. W., Wible, J. R., Novacek, M. J. (1998). Implications of Deltatheridium specimens for early marsupial history. Nature 396: 459–463.

    Google Scholar 

  • Savage, D. E., and Russell, D. E. (1983). Mammalian Paleofaunas of the World. Addison-Wesley, Reading, Mass.

  • Springer, M. S. (1997). Molecular clocks and the timing of the placental and marsupial radiations in relation to the Cretaceous-Tertiary boundary. J.Mammal.Evol. 4: 285–302.

    Google Scholar 

  • Stanhope, M. J., Waddell, V. G., Madsen, O., de Jong, W. W., Hedges, S. B., Cleven, G. C., Kao, D., and Springer, M. S. (1998). Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proc.Natl.Acad.Sci.95: 9967–9972.

    Google Scholar 

  • Strauss, E. (1999). Can mitochondrial clocks keep time? Science 238: 1435–1438.

    Google Scholar 

  • Todd, N. E. and Roth, V. L. (1996). Origin and radiation of the Elephantidae. In: The Proboscidea: Evolution and Palaeoecology of Elephants and Their Relatives, J. Shoshani and P. Tassy, eds., pp. 193–202. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Wilk, M. B. and Gnanadesikan, R. (1968). Probability plotting methods for the analysis of data. Biometrika 55: 1–17.

    Google Scholar 

  • Wilkinson, L. (1999). SYSTAT 9 Graphics. SPSS Inc., Chicago.

    Google Scholar 

  • Wilson D. E. and Reeder D. M. (1993) Mammal Species of the World: A Taxonomic and Geographic Reference.Smithsonian Institution Press, Washington D. C.

    Google Scholar 

  • Woodburne, M. O., and Case, J. A. (1996). Dispersal, vicariance, and the late Cretaceous to early Tertiary land mammal biogeography from South America to Australia. J.Mammal.Evol.3: 121–162.

    Google Scholar 

  • Wray, G. A., Levinton, J. S., and Shapiro, J. S. (1996). Molecular evidence for deep Precambrian divergences among metazoan phyla. Science 274: 568–573.

    Google Scholar 

  • Wyss, A. R. and Flynn, J. J. (1993). A phylogenetic analysis and definition of Carnivora. In: Mammal Phylogeny: Placentals, F. Szalay, M. J. Novacek, and M. C. McKenna,, pp. 32–52.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Archibald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Archibald, J.D., Deutschman, D.H. Quantitative Analysis of the Timing of the Origin and Diversification of Extant Placental Orders. Journal of Mammalian Evolution 8, 107–124 (2001). https://doi.org/10.1023/A:1011317930838

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011317930838

Navigation