Skip to main content
Log in

Advances in morphometric identification of fishery stocks

  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Geographic variation in morphometry has been used todiscriminate local forms of fish for over a century. The historical development of stock identificationmethods has paralleled the advancement of morphometrictechniques. The earliest analyses of morphometricvariables for stock identification were univariatecomparisons, but were soon followed by bivariateanalyses of relative growth to detect ontogeneticchanges and geographic variation among fishstocks. As the field of multivariatemorphometrics flourished, a suite of multivariatemethods was applied to quantify variation in growthand form among stocks. More recent advances have beenfacilitated by image processing techniques, morecomprehensive and precise data collection, moreefficient quantification of shape, and new analyticaltools. Many benchmark case studies and critiquesoffer guidelines for sampling morphometrics andinterpreting multivariate analyses for exploratorystock identification, stock discrimination, and stockdelineation. As examples of morphometric stockidentification based on life history differences,allometric patterns of crustacean secondary sexcharacters have been used to detect geographicvariation in size at maturity, and morphometriccorrelates to smoltification have been used todiscriminate salmon from different rivers. Morphometric analysis provides a powerful complementto genetic and environmental stock identificationapproaches. The challenge for the future ofmorphometric stock identification is to develop aconsensus on biological interpretations of geometricanalyses, similar to the conventional interpretationsof size and shape from traditional multivariatemorphometrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerly, S.C. (1990) Using growth functions to identify homologous landmarks on molluscs. In: Rohlf, F.J., Bookstein, F. L. eds. Proceedings of the Michigan Morphometrics Workshop. Univ. Michigan Mus. Zool. Spec. Pub. 2, pp. 339–344.

  • Airoldi, J.-P. and Flury, B.K. (1988) An application of common principal component analysis to cranial morphometry of Microtus californicus and M. ochrogaster (Mammalia, Rodentia). J. Zool. (London) 216, 21–36.

    Google Scholar 

  • Alberch, P., Gould, S.J., Oster, G.F., and Wake, D.B. (1979) Size and shape in ontogeny and phylogeny. Paleobiology 5, 296–317.

    Google Scholar 

  • Armstrong, M.P. and Cadrin, S.X. (2001) Morphometric patterns within and among spawning aggregations of Atlantic herring (Clupea harengus) off the northeast United States. In Herring 2001. Alaska Sea Grant Report AK-SG-2000-01 (in press).

  • Atchley, W.R. (1978) Ratios, regression intercepts, and the scaling of data. Syst. Zool. 27, 78–83.

    Google Scholar 

  • Atchley, W.R., Gaskins, C.T., and Anderson, D. (1976) Statistical properties of ratios. Syst. Zool. 25, 137–148.

    Google Scholar 

  • Beacham, T.D. (1984) Age and morphology of chum salmon in southern British Columbia. Trans. Am. Fish. Soc. 113, 727–736.

    Google Scholar 

  • Beacham, T.D. (1985) Variation and morphometric variation in pink salmon (Oncorhynchus gorbuscha) in southern British Columbia and Puget Sound. Can. J. Zool. 63, 366–372.

    Google Scholar 

  • Beacham, T.D., Gould, A.P., and Stefanson, A.P. (1983). Size, age, meristics, and morphometrics of chum salmon returning to southern British Columbia during 1981- 1982. Can. Tech. Rep. Fish. Aquat. Sci. 1207.

  • Beacham, T.D. and Murray, C.B. (1987) Adaptive variation in body size, age, morphology, egg size and developmental biology of chum salmon (Oncorhynchus keta) in British Columbia. Can. J. Fish. Aquat. Sci. 44, 244–261.

    Google Scholar 

  • Beacham, T.D., Murray, C.B. and Withler, R.E. (1988a) Age, morphology, developmental biology and biochemical genetic variation of Yukon River fall chum salmon, Oncorhynchus keta, and comparisons with British Columbia populations. Fish. Bull. 86, 663–674.

    Google Scholar 

  • Beacham, T.D., Withler, R.E., Murray, C.B. and Barner, L.W. (1988b) Variation in body size, morphology, egg size and biochemical genetics of pink salmon in British Columbia. Trans. Am. Fish. Soc. 117, 109–126.

    Google Scholar 

  • Begg, G., Friedland, K.D. and Pearce, J.B. (1999) Stock Identification - its role in stock assessment and fisheries management. Fish. Res. 43, 1–8.

    Google Scholar 

  • Berg, R.E. (1979) External morphology of the pink salmon, Oncorhynchus gorbuscha, introduced into Lake Superior. J. Fish. Res. Bd. Can. 36, 1283–1287.

    Google Scholar 

  • Blackith, R.E. and Reyment, R.A. (1971) Multivariate Morphometrics. Academic Press, London, 71 pp.

    Google Scholar 

  • Bond, C.E. (1979) Biology of Fishes. Saunders College Publishing, Philadelphia, 514 pp.

    Google Scholar 

  • Booke, H.E. (1981). The conundrum of the stock concept - are nature and nurture definable in fishery science? Can. J. Fish. Aquat. Sci. 38, 1479–1480.

    Google Scholar 

  • Bookstein, F.L. (1990) Introduction to methods for landmark data. In: Rohlf, F.J., Bookstein, F. L. eds. Proceedings of the Michigan Morphometrics Workshop. Univ. Michigan Mus. Zool. Spec. Pub. 2, pp. 215–226.

  • Bookstein, F.L. (1991) Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge Univ. Press, 435 pp.

  • Bookstein, F.L., Chernoff, B., Elder, R.L., Humphries, J.M., Smith, G.R. and Strauss, R.E. (1985) Morphometrics in Evolutionary Biology, the Geometry of Size and Shape Change with Examples from Fishes. Acad. Nat. Sci. Philadelphia Spec. Pub. 15, 277 pp.

    Google Scholar 

  • Bookstein, F.L., Strauss, R.E., Humphries, J.M., Chernoff, B., Elder, R.L. and Smith, G.R. (1982) A comment on the use of Fourier methods in systematics. Syst. Zool. 31, 85–92.

    Google Scholar 

  • Bowering, W.R. (1988) An analysis of morphometric characters of Greenland halibut (Reinhardtius hippoglossoides) in the Northwest Atlantic using a multivariate analysis of covariance. Can. J. Fish. Aquat. Sci. 45, 580–585.

    Google Scholar 

  • Bowering, W.R., Misra, R.K. and Brodie, W.B. (1998) Application of a newly developed statistical procedure to morphometric data from American plaice (Hippoglossoides platessoides) in the Canadian Northwest Atlantic. Fish. Res. 34, 191–203.

    Google Scholar 

  • Brown, B.E., Darcy, G.H. and Overholtz, W. (1987) Stock assessment/ stock identification: an interactive process. In: Kumpf, H.E., Vaught, R.N., Grimes, C.B., Johnson, A.G. and Nakamura, E.L. eds. Proceedings of the Stock Identification Workshop. NOAA Tech. Mem. NMFS-SEFC 199, pp. 1–25.

  • Burnaby, T.P. (1966) Growth-invariant discriminant functions and generalized distances. Biometrics 22, 96–110.

    Google Scholar 

  • Cadrin, S.X. (1995) Discrimination of American lobster (Homarus americanus) stocks off southern New England on the basis of secondary sex character allometry. Can. J. Fish. Aquat. Sci. 52, 2712–2723.

    Google Scholar 

  • Cadrin, S.X. and Friedland, K.D. (1999) The utility of image processing techniques for morphometric analysis and stock identification. Fish. Res. 43, 129–139.

    Google Scholar 

  • Carl, L.M. and Healey, M.C. (1984) Differences in enzyme frequency and body morphology among three juvenile life history types of chinook salmon (Oncorhynchus tshawytscha) in the Nanaimo River, British Columbia. Can. J. Fish. Aquat. Sci. 41, 1070–1077.

    Google Scholar 

  • Carvalho, G.R. and Hauser, L. (1994) Molecular genetics and the stock concept in fisheries. Rev. Fish. Bio. Fish. 4, 326–350.

    Google Scholar 

  • Campbell, N.A. (1980) Robust procedures in multivariate analysis. I. robust covariance estimation. Appl. Statist. 29, 231–237.

    Google Scholar 

  • Campbell, A. and Mohn, R.K. (1982) The quest for lobster stock boundaries in the Canadian Maritimes. NAFO SCR Doc. No. 82/IX/107.

    Google Scholar 

  • Cole, L.C. (1954) The population consequences of life history phenomena. Quart. Rev. Biol. 29, 103–137.

    Google Scholar 

  • Conan, G., Comeau, M. and Moriyasu, M. (1985) Functional maturity of the American lobster Homarus americanus. ICES C.M. K29.

  • Corti, M. and Crosetti, D. (1996) Geographic variation in the grey mullet Mugil cephalus (Pices: Mugilidae): a geometric morphometric analysis using partial warp scores. J. Fish Biol. 48, 255–269.

    Google Scholar 

  • Cote, G., Lamoureaux, P., Boulva, J. and Lacroix, G. (1980) Separation des populations de hereng del'Atlantique (Clupea Harengus harengus) de l'estuaire du Sainte-Laurent et del la peninsule gaspesienne. Can. J. Fish Aquat. Sci. 37, 66–71.

    Google Scholar 

  • Davidson, F.A. (1935) The development of secondary sexual characters in the pink salmon (Oncorhynchus gorbucha). J. Morphol. 57, 169–183.

    Google Scholar 

  • Douglas, M.E. (1993) Analysis of sexual dimorphism in an endangered cyprinid fish (Gila cyphia Miller) using video image technology. Copeia 93, 334–343.

    Google Scholar 

  • Dean, D. (1996) Three-dimensional data capture and visualization. In: Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P. and Slice, D.E. eds. Advances in Morphometrics. NATO ASI Series A: Life Sciences 284, pp. 53–70.

  • Ehrlich, R., Baxter Pharr, R., Jr. and Healy-Williams, N. (1983) Comments on the validity of Fourier descriptors in systematics: a reply to Bookstein et al. Syst. Zool. 32, 202–206.

    Google Scholar 

  • Estrella, B.T. and Cadrin, S.X. (1995) Fecundity of the American lobster (Homarus americanus) in Massachusetts coastal waters. ICES Mar. Sci. Symp. 199, 61–72.

    Google Scholar 

  • Fabrizio, M.C. (1985) Growth-invariant discrimination and classi-fication of striped bass (Morone saxatilis) stocks in New York, Connecticut, and Rhode Island by morphometric and electrophoretic methods. In: Kumpf, H.E., Vaught, R.N., Grimes, C.B., Johnson, A.G. and Nakamura, E.L. eds. Proceedings of the Stock Identification Workshop. NOAA Tech. Mem. NMFS-SEFC 199, pp. 185–186.

  • Fabrizio, M.C. (1987) Growth-invariant discrimination and classi-fication of striped bass stocks by morphometric and electrophoretic methods. Trans. Am. Fish. Soc. 116, 728–736.

    Google Scholar 

  • Ferson, S., Rohlf, F.J. and Koehn, R.K. (1985) Measuring shape variation of two-dimensional outlines. Syst. Zool. 34, 59–68.

    Google Scholar 

  • Fevolden, S.E. and Hessen, D.O. (1989) Morphological and genetic differences among recently founded populations of noble cray-fish (Astacus astacus). Hereditas 110, 149–158.

    Google Scholar 

  • Fink, W.L. and Zelditch, M.L. (1995) Phylogenetic analysis of ontogenetic shape transformations: a reassessment of the piranha genus Pygocentrus (Teleostei). Syst. Biol. 44, 344–361.

    Google Scholar 

  • Fisher, R.A. (1936) The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–188.

    Google Scholar 

  • Friedland, K.D. (1996) Analyses of calcified structures - Fourier shape analysis. ICES C.M. 1996/M1, 17–20.

    Google Scholar 

  • Friedland, K.D., Esteves, C., Hansen, L.P. and Lund, R.A. (1994) Discrimination of Norwegian farmed, ranched and wild-origin Atlantic salmon, Salmo salar L., by image processing. Fisheries Management Ecology 1, 117–128.

    Google Scholar 

  • Garrod, J.D. and Horwood, J.W. (1984) Reproductive strategies and the response to exploitation. In: Potts, G.W. and Wootton, R.J. eds. Fish Reproduction. Academic Press, pp. 367–384.

  • Gibson, A. R., Baker, A.J. and Moeed, A. (1984) Morphometric variation in introduced populations of the common myna (Acridotheres tristis): an application of the jackknife to principal components analysis. Syst. Zool. 33, 408–421.

    Google Scholar 

  • Gould, S.J. (1966) Allometry and size in ontogeny and phylogeny. Biol. Rev. 41, 587–640.

    Google Scholar 

  • Gould, S.J. (1977) Ontogeny and Phylogeny. Harvard University Press, Cambridge, 501 pp.

    Google Scholar 

  • Gould, S. J. and Johnston, R.F. (1972) Geographic variation. Ann. Rev. Ecol. Syst. 3, 457–498.

    Google Scholar 

  • Grandjean, F., Romain, D., Souty-Grosset, C. and Mocquard, J.P. (1997) size at sexual maturity and morphometric variability in three populations of Austropotamobius pallipes pallipes (Lereboullet, 1958) according to a restocking strategy. Custaceana 70, 454–468.

    Google Scholar 

  • Hampel, F.R., Ronchetti, E.N., Rousseeuw, P.J. and Stahel, W.A. (1986) Robust Statistics. Wiley and Sons, New York, 502 pp.

    Google Scholar 

  • Hartnoll, R.G. (1978). The determination of relative growth in crustacea. Crustaceana 34, 281–293.

    Google Scholar 

  • Hartnoll, R.G. (1982). Growth. In: Abele, L.G. ed. The Biology of Crustacea, Vol. 2. Academic Press, New York, pp. 111–196.

    Google Scholar 

  • Hedgecock, D., Hutchinson, E.S., Li, G., Sly, F.L. and Nelson, K. (1989) Genetic and morphometric variation in the Pacific sardine, Sardinops sagnax caerulea: comparisons and contrasts with historical data with variability in the northern anchovy, Engraulis mordax. Fish. Bull. 87, 653–671.

    Google Scholar 

  • Heinke, F. (1878) Die varietäten des herings I. Jahresbuch, Kommission für die Untersuchungen der Deutschen Meere in Kiel 4- 6, 37–132.

    Google Scholar 

  • Holtby, L.B., Swain, D.P. and Allan, G.M. (1993) Mirror-elicited agonistic behaviour and body morphology as predictors of dominance status in juvenile coho salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci. 50, 676–684.

    Google Scholar 

  • Hubbs, C.L. and Lagler, K.F. (1947) Fishes of the Great Lakes region. Cranbrook Inst. Sci. Bull. 26.

  • Humphries, J.M., Bookstein, F.L., Chernoff, B., Smith, G.R., Elder, R.L. and Poss, S.G. (1981) Multivariate discrimination by shape in relation to size. Syst. Zool. 30, 291–308.

    Google Scholar 

  • Huxley, J.S. (1932) Problems of Relative Growth. The Dial Press, New York, 276 pp.

    Google Scholar 

  • ICES (International Council for the Exploration of the Sea) (1996) Report of the study group on stock identification protocols for finfish and shellfish stocks. ICES C.M. M1.

  • Ihssen, P.E., Bodre, H.F., Casselman, J.M., McGlade, J.M. Payne, N.R. and Utter, F.M. (1981) Stock identification: materials and methods. Can. J. Fish. Aquat. Sci. 38, 1838–1855.

    Google Scholar 

  • Jefferson, T.A. (1989) Sexual dimorphism and development of external features in Dall's porpoise Pocoenoides dalli. Fish. Bull. 88, 119–132.

    Google Scholar 

  • Jennrich, R. and Sampson, P. (1990) Stepwise discriminant analysis. In Dixon, W.J., ed. BMDP Statistical Software Manual, Vol. 1. Univ. Calif. Press, Berkeley, pp. 339–358.

    Google Scholar 

  • Jolicoeur, P.J. (1963) The multivariate generalization of the allometric equation. Biometrics 19, 497–499.

    Google Scholar 

  • Jolicoeur, P. and Mosimann, J.E. (1960) Size and shape variation in the painted turtle, a principal component analysis. Growth 24, 339–354.

    Google Scholar 

  • Kaesler, R.L. and Waters, J.A. (1972) Fourier analysis of the ostracode margin. Bull. Geol. Soc. Amer. 83, 1169–1178.

    Google Scholar 

  • Kallman, K.D. and Schreibman, M.D. (1973) A sex-linked gene controlling gonadotrop differentiation and its significance in determining age of sexual maturation and size of platyfish Xiphophorus maculatus. Gen. Comp. End. 21, 287–304.

    Google Scholar 

  • King, D.P.F. (1985) Morphological and meristic differences between spawning aggregations of northeast Atlantic herring, Clupea harengus L. J. Fish Biol. 26, 591–607.

    Google Scholar 

  • Kumpf, H.E., Vaught, R.N., Grimes, C.B., Johnston, A.G. and Nakamura, E.L. (1987) Proceedings of the Stock Identification Workshop. NOAA Tech. Mem. NMFS-SEFC 199.

  • Klingenberg, C.P. (1996) Multivariate allometry. In: Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P. and Slice, D.E. eds.Advances in Morphometrics. NATO ASI Series A: Life Sciences 284, pp. 23–49.

  • Lachenbruch, P. and Mickey, R.M. (1968) Estimation of error rates in discriminant analysis. Technometrics 10, 1–11.

    Google Scholar 

  • Lagler, K.F., Bardach, J.E., Miller, R.R. and Passino, D.R. May (1977) Ichthyology, 2nd Ed. John Wiley and Sons, New York, 545 pp.

    Google Scholar 

  • Lee, P.J. (1971) Multivariate analysis for the fisheries biology. Fish. Res. Bd. Can. Tech. Rep. 244, 1–182.

    Google Scholar 

  • Lee, S. and Richtsmeier, J.T. (1990) Statistical models in morphometrics: are they realistic? Syst. Zool. 39, 60–69.

    Google Scholar 

  • Lissner, H. (1934) On races of herring. J. Cons. Int. Explor. Mer. 9, 346–364.

    Google Scholar 

  • Lohmann, G.P. (1983) Eigenshape analysis of microfossils: a general morphometric procedure for describing changes in shape. Math. Geol. 15, 659–672.

    Google Scholar 

  • Lohmann, G.P. and Schweitzer, P.N. (1990) On eigenshape analysis. In: Rohlf, F.J., Bookstein, F.L. eds. Proceedings of the Michigan Morphometrics Workshop. Univ. Michigan Mus. Zool. Spec. Pub. 2, pp. 147–166.

  • Lovett, D.L. and Felder, D.L. (1989) Application of regression techniques to studies of relative growth in crustaceans. J. Crust. Biol. 91, 529–539.

    Google Scholar 

  • Loy, A. (1996) An introduction to geometric morphometrics and intraspecific variation, a fascinating adventure. In: Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P. and Slice, D.E. eds. Advances in Morphometrics. NATO ASI Series A: Life Sciences 284, pp. 271–273.

  • Loy, A., Cataudella, S. and Corti, M. (1996) Shape changes during the growth of the sea bass, Dicentrarchus labrax (Teleostea: Perciformes), in relation to different rearing conditions. In: Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P. and Slice, D.E. eds. Advances in Morphometrics. NATO ASI Series A: Life Sciences 284, pp. 399–414.

  • Loy, A., Mariani, L., Bertelletti, M. and Tunesi, L. (1998) Visualizing allometry: geometric morphometrics in the study of shape changes in the early stages of the two-banded sea bream, Diplodus vulgaris (Perciformes, Sparidae). J. Morph. 237, 137–146.

    Google Scholar 

  • MacCrimmon, H.R. and Claytor, R.R. (1985) Meristic and morphometric identity of Baltic stocks of Atlantic salmon (Salmo salar). Can. J. Zool. 63, 2032–2037.

    Google Scholar 

  • MacLeod, N. (1990) Digital images and automated image analysis systems. In: Rohlf, F.J. and Bookstein, F.L. eds. Proceedings of the Michigan Morphometrics Workshop. Univ. Michigan Mus. Zool. Spec. Pub. 2, pp. 21–36.

  • MacLeod, N. and Kitchell, J. (1990) Morphometric and evolutionary inference: a case study involving ontogenetic and developmental aspects of evolution. In: Rohlf, F.J. and Bookstein, F.L. eds. Proceedings of the Michigan Morphometrics Workshop. Univ. Michigan Mus. Zool. Spec. Pub. 2, pp. 283–300.

  • Macy, W.K., III (1982) Development and application of an objective method for classifying long-finned squid loligo pealei into sexual maturity stages. Fish. Bull. 80, 449–459.

    Google Scholar 

  • Marcus, L.F. (1990) Traditional morphometrics. In: Rohlf, F.J. and Bookstein, F.L. eds. Proceedings of the Michigan Morphometrics Workshop. Univ. Michigan Mus. Evol. Spec. Pub. 2, pp. 77–122.

  • Marcus, L.F. and Corti, M. (1996) Overview of the new, or geometric morphometrics. In: Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P. and Slice, D.E. eds. Advances in Morphometrics. NATO ASI Series A: Life Sciences 284, 1–13.

  • Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P. and Slice, D.E. (1996) Advances in Morphometrics. NATO ASI Series A: Life Sciences 284, 587 pp.

  • Marr, J.C. (1957) Contributions to the study of subpopulations of fishes. U.S. Dep. Inter. Fish and Wildlife Serv. Spec. Sci. Rep. Fish No. 208.

  • McCormick, S.D. (1994) Ontogeny and evolution of salinity tolerance in anadromous salmonids: hormones and heterochrony. Estuaries 17, 26–33.

    Google Scholar 

  • Misra, R.K. (1996) A multivariate procedure for comparing mean vectors for populations with unequal regression coefficient and residual covariance matrices. Biom. J. 38, 415–424.

    Google Scholar 

  • Misra, R.K. and Ni, I-H. (1983) Distinguishing beaked redfishes (deepwater redfish, Sebastes mentella, and Labrador redfish, S. fasciatus) by discriminant analysis (with covariance) and multivariate analysis of covariance. Can. J. Fish. Aquat. Sci. 40, 1507–1511.

    Google Scholar 

  • Moltschaniwskyj, N.A. (1995) Changes in shape associated with growth in the loliginid squid Photololigo sp.: a morphometric approach. Can. J. Zool. 73, 1335–1343.

    Google Scholar 

  • Nesterov, A.N. (1983) Post-spawning changes in some characters of navaga, Eleginus navaga (Gadidae), from the Pechora sea. J. Ichthyol. 23(6), 142–145.

    Google Scholar 

  • Nicieza, A.G. (1995) Morphological variation between geographically disjunct populations of Atlantic salmon: the effects of ontogeny and habitat shift. Funct. Ecol. 9, 448–456.

    Google Scholar 

  • Nicieza, A.G., Reyes-Gaulan, F.G. and Brann, F. (1994) Differentiation in juvenile growth and bimodality patterns between northern and southern populations of Atlantic salmon (Salmo salar L.). Can. J. Zool. 72, 1603–1610.

    Google Scholar 

  • Parker, H.H. and Johnson, L. (1991) Population structure, ecological segregation and reproduction in non-anadromous Arctic char, Salvelinus alpinus (L), in four unexploited lakes in the Canadian high Arctic. J. Fish. Biol. 38, 123–147.

    Google Scholar 

  • Pawson, M.G. and Jennings, S. (1996) A critique of methods for stock identification in marine capture fisheries. Fish. Res. 25, 203–217.

    Google Scholar 

  • Pearson, K. (1906) Walter Frank Raphael Weldon. Biometrika 5, 1–52.

    Google Scholar 

  • Phillips, B.F., Cobb, J.S. and George, R.W. (1980) General biology. In: Cobb, J.S. and Phillips, B.F. eds. The Biology and Management of Lobsters. Academic Press, New York, pp. 2–84.

    Google Scholar 

  • Pimentel, R.A. (1979) Morphometrics, the Multivariate Analysis of Biological Data. Kendall/Hunt Publ. Co., Dubuque, Iowa, 276 pp.

    Google Scholar 

  • Raup, D.M. (1966) Geometric analysis of shell coiling: general problems. J. Paleontol. 40, 1178–1190.

    Google Scholar 

  • Reis, R.E., Zelditch, M.L. and Fink, W.L. (1998) Ontogenetic allometry of body shape in the neotropical catfish Callichthys (Teleostei: Siluriformes). Copeia 98, 177–182.

    Google Scholar 

  • Reyes Gavilan, F.G., Ojanguren, A.F. and Brana, F. (1997) The ontogenetic development of body segments and sexual dimorphism in brown trout (Salmo trutta L.) Can. J. Zool. 75, 651–655.

    Google Scholar 

  • Reyment, R.A. (1985) Multivariate morphometrics and analysis of shape. Math. Geol. 17, 591–609.

    Google Scholar 

  • Reyment, R. (1990) Reification of classical multivariate analyses in morphometry. In: Rohlf, F.J. and Bookstein, F.L. eds. Proceedings of the Michigan Morphometrics Workshop. Univ. Michigan Mus. Zool. Spec. Pub. 2, pp. 123–144.

  • Reyment, R., Blackith, R.E. and Campbell, N.A. (1984) Multivariate Morphometrics, 2nd ed. Academic Press, London, 232 pp.

    Google Scholar 

  • Riddell, B.E. and Leggett, W.C. (1981) Evidence of an adaptive basis for geographic variation in body morphology and time of downstream migration of juvenile Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 38, 308–320.

    Google Scholar 

  • Riddell, B.E., Leggett, W.C. and Sanders, R.R. (1981) Evidence of an adaptive polygenic variation between two populations of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 38, 321–333.

    Google Scholar 

  • Robinson, B.W. and Wilson, D.S. (1994) Character release and displacement in fishes: a neglected literature. Am. Nat. 144, 596–627.

    Google Scholar 

  • Roby, D., Lambert, J.D. and Sevigny, J.M. (1991) Morphometric and electrophoretic approaches to discrimination of capelin (Mallotus villosus) populations in the estuary and Gulf of Saint Lawrence. Can. J. Fish. Aquat. Sci. 48, 2040–2050.

    Google Scholar 

  • Rohlf, F.L. (1990a) An overview of image processing and analysis techniques for morphometrics. In: Rohlf, F.J. and Bookstein, F.L. eds. Proceedings of the Michigan Morphometrics Workshop. Univ. Michigan Mus. Zool. Spec. Pub. 2, pp. 37–60.

  • Rohlf, F.L. (1990b) Fitting curves to outlines. In: Rohlf, F.J. and Bookstein, F.L. eds. Proceedings of the Michigan Morphometrics Workshop. Univ. Michigan Mus. Zool. Spec. Pub. 2, pp. 167–177.

  • Rohlf, F.L. (1998) On applications of geometric morphometrics to studies on ontogeny and phylogeny. Syst. Biol. 47, 147–158.

    Google Scholar 

  • Rohlf, F.J. and Bookstein, F.L. (1987) A comment on shearing as a method for “size correction”. Syst. Zool. 36, 356–367.

    Google Scholar 

  • Rohlf, F.J. and Bookstein, F.L. (1990) Proceedings of the Michigan Morphometrics Workshop. Univ. Michigan Mus. Zool. Spec. Pub. 2.

  • Rohlf, F.L. and Marcus, L.F. (1993) A revolution in morphometrics. Trends in Ecology and Evolution 8, 129–132.

    Google Scholar 

  • Royce, W.F. (1957) Statistical comparison of morphological data. In: Marr, J.C. ed. Contributions to the Study of Subpopulations of Fishes. U.S. Fish and Wildlife Serv. Spec. Sci. Rep.-Fisheries 208, pp. 7–28.

  • Saila, S.B. and Flowers, J.M. (1969) Geographic morphometric variation in American lobster. Syst. Zool. 18, 330–338.

    Google Scholar 

  • Saila, S.B. and Martin, B.K. (1987) A brief review and guide to some multivariate methods for stock identification. In: Kumpf, H.E., Vaught, R.N., Grimes, C.B., Johnson, A.G. and Nakamura, E.L. eds. Proceedings of the Stock Identification Workshop. NOAA Tech. Mem. NMFS-SEFC 199, 149–175.

  • Schweigert, J. (1987) A new multivariate approach to describe Pacific herring stocks from size at age and age structure information. In: Kumpf, H.E., Vaught, R.N., Grimes, C.B., Johnson, A.G. and Nakamura, E.L. eds. Proceedings of the Stock Identification Workshop. NOAA Tech. Mem. NMFS-SEFC 199, pp. 188–190.

  • Schweigert, J. (1990) Comparison of morphometric and meristic data against truss networks for describing Pacific herring stocks. Am. Fish. Soc. Symp. 7, 47–62.

    Google Scholar 

  • Shea, B.T. (1985) Bivariate and multivariate growth allometry: statistical and biological considerations. J. Zool. Lond. (A) 206, 367–390.

    Google Scholar 

  • Sinclair, M. (1988) Marine Populations and Essay on Population Regulation and Speciation. Washington Sea Grant Program, Seattle, 252 pp.

    Google Scholar 

  • Skulason, S., Noakes, D.L. and Snorranson, S.S. (1989) Ontogeny of trophic morphology in four sympatric morphs of Arctic charr Salvelinus alpinus in Thingvallavatn, Iceland. Biol. J. Linn. Soc. 38, 281–301.

    Google Scholar 

  • Skulason, S., Snorranson, S.S., Noakes, D.L.G. and Ferguson, M.M. (1996) Genetic variation of life history variations among sympatric morphs of Arctic charr Salvelinus alpinus. Can. J. Fish. Aquat. Sci. 53, 1807–1813.

    Google Scholar 

  • Smith, R.J. (1980) Rethinking allometry. J. Theor. Biol. 87, 97–111.

    Google Scholar 

  • Solow, A. (1990) A randomization test for misclassification probability in discriminant analysis. Ecology 71, 2379–2382.

    Google Scholar 

  • Somers, K.M. (1986) Multivariate allometry and removal of size with principal components analysis. Syst. Zool. 35, 359–368.

    Google Scholar 

  • Somers, K.M. (1989) Allometry, isometry, and shape in principal components analysis. Syst. Zool. 38, 169–173.

    Google Scholar 

  • Somerton, D.A. (1981) Regional variation in the size of maturity of two species of tanner crab (Chionoecetes bairdi and C. opilio) in the eastern Bering Sea, and its use in defining management subareas. Can. J. Fish. Aquat. Sci. 38, 163–174.

    Google Scholar 

  • Somerton, D.A. and Otto, R.S. (1986) Distribution and reproductive biology of the golden king crab, Lithodes aequispina, in the eastern Bering Sea. Fish. Bull. 84, 571–584.

    Google Scholar 

  • Strauss, R.E. (1993) The study of allometry since Huxley. In Problems of Relative Growth. Johns Hopkins University Press, pp. ilvii–lxxv.

  • Strauss, R.E. and Bookstein, F.L. (1982) The truss: body form reconstructions in morphometrics. Syst. Zool. 31, 113–135.

    Google Scholar 

  • Sundberg, P. (1989) Shape and size constrained principal components analysis. Syst. Zool. 38, 166–168.

    Google Scholar 

  • Swain, D.P. and Foote, C.J. (1999) Stocks and chameleons: the use of phenotypic variation in stock identification. Fish. Res. 43, 113–128.

    Google Scholar 

  • Swain, D.P. and Holtby, L.B. (1989) Differences in morphology and behavior between juvenile coho salmon (Oncorhynchus kisutch) rearing in a lake or in its tributary stream. Can. J. Fish. Aquat. Sci. 46, 1406–1414.

    Google Scholar 

  • Tabachnick, B.G. and Fidell, L.S. (1989) Using Multivariate Statistics. Harper Row and Collins, 746 pp.

  • Taylor, E.B. and McPhail, J.D. (1985a) Variation in body morphology among British Columbia populations of coho salmon, Oncorhynchus kisutch. Can. J. Fish. Aquat. Sci. 42, 2020–2028.

    Google Scholar 

  • Taylor, E.B. and McPhail, J.D. (1985b) Variation in burst and prolonged swimming performance among British Columbia populations of coho salmon, Oncorhynchus kisutch. Can. J. Fish. Aquat. Sci. 42, 2029–2033.

    Google Scholar 

  • Teissier, G. (1936) Croissance comparee des formes locales d'une meme espece. Mem. Mus. r. Hist. Nat. Belg. 3 (2nd Ser), 627–634.

    Google Scholar 

  • Teissier, G. (1938) Un essai d'analyse factorielle, les variants sexuels de Maja squinada. Biotypologie 7, 73–96.

    Google Scholar 

  • Teissier, G. (1960). Relative growth. In: Waterman, T.H. ed. The Physiology of Crustacea. Academic Press, New York, pp. 537–560.

    Google Scholar 

  • Templeman, W. (1935) Local differences in the body proportions of the lobster, Homarus americanus. J. Biol. Bd. Can. 1, 213–226.

    Google Scholar 

  • Templeman, W. (1936) Local differences in life history of the lobster (Homarus americanus) on the coast of the maritime provinces of Canada. J. Biol. Bd. Can. 2, 41–88.

    Google Scholar 

  • Templeman, W. (1982) Stock discrimination in marine fishes. NAFO SCR Doc. 82/IX/79.

  • Thompson, D.W. (1917) On Growth and Form. Cambridge Univ. Press, London, 346 pp.

    Google Scholar 

  • Thorpe, R.S. (1976) Biometric analysis of geographic variation and racial affinities. Biol. Rev. 51, 407–452.

    Google Scholar 

  • Thorpe, R.S. (1988) Multiple group principal components analysis and population differentiation. J. Zool. Lond. 216, 37–40.

    Google Scholar 

  • Trippel, E.A. and Hubert, J.J. (1990) Common statistical errors in fishery research. In: Hunter, J. ed. Writing for Fishery Journals. American Fisheries Society, pp. 93–102.

  • Tully, O. and Hillis, J.P. (1995) Causes and spatial scales of variability in population structure of Nephrops norvegicus (L.) in the Irish Sea. Fish. Res. 21, 329–347.

    Google Scholar 

  • Wada, K. (1991) Biogeographic pattern in waving display, and body size and proportions of Macropthalmus japonicus species complex (Crustacea: Brachyura: Ocypodidae). Zool. Sci. 8, 135–146.

    Google Scholar 

  • Waldman, J.R. and Fabrizio, M.C. (1994) Problems of stock definition in estimating relative contributions of Atlantic striped bass to the coastal fishery. Trans. Am. Fish. Soc. 123, 766–778.

    Google Scholar 

  • Waldman, J.R., Richards, R.A., Schill, W.B., Wirgin, I. and Fabrizio, M.C. (1997) An empirical comparison of stock identi-fication techniques applied to striped bass. Trans. Am. Fish. Soc. 126, 369–385.

    Google Scholar 

  • Walker, J.A. (1996) Principal components of body shape variation within an endemic radiation of threespine stickleback. In: Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P. and Slice, D.E. eds. Advances in Morphometrics. NATO ASI Series A: Life Sciences 284, pp. 321–334.

  • Walker, J.A. (1997) Ecological morphology of lacustrine threespine stickleback Gasterosteus aculeatus L. body shape. Biol. J. Linn. Soc. 61, 3–50.

    Google Scholar 

  • Winans, G.A. (1984) Multivariate morphometric variability in Pacific salmon: technical demonstration. Can. J. Fish. Aquat. Sci. 41, 1150–1159.

    Google Scholar 

  • Winans, G.A. (1987) Using morphometric and meristic characters for identifying stocks of fish. In: Kumpf, H.E., Vaught, R.N., Grimes, C.B., Johnson, A.G. and Nakamura, E.L. eds. Proceedings of the Stock Identification Workshop. NOAA Tech. Mem. NMFS-SEFC 199, 135–146.

  • Winans, G.A. and Nishioka, R.S. (1987) A multivariate description of change in body shape of coho salmon (Oncorhynchus kisutch) during smoltification. Aquaculture 66, 235–245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cadrin, S.X. Advances in morphometric identification of fishery stocks. Reviews in Fish Biology and Fisheries 10, 91–112 (2000). https://doi.org/10.1023/A:1008939104413

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008939104413

Navigation