Skip to main content
Log in

The β-lactam antibiotics: past, present, and future

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The discovery and development of the β-lactam antibiotics are among the most powerful and successful achievements of modern science and technology. Since Fleming's accidental discovery of the penicillin-producing mold, seventy years of steady progress has followed, and today the β-lactam group of compounds are the most successful example of natural product application and chemotherapy. Following on the heels of penicillin production by Penicillium chrysogenum came the discoveries of cephalosporin formation by Cephalosporium acremonium, cephamycin, clavam and carbapenem production by actinomycetes, and monocyclic β-lactam production by actinomycetes and unicellular bacteria. Each one of these groups has yielded medically-useful products and has contributed to the reduction of pain and suffering of people throughout the world. Research on the microbiology, biochemistry, genetics and chemistry of these compounds have continued up to the present with major contributions being made by both individual and collaborative groups from industry and academia. The discovery of penicillin not only led to the era of the wonder drugs but provided the most important antibiotics available to medicine. Continued efforts have resulted in the improvement of these compounds with respect to potency, breadth of spectrum, activity against resistant pathogens, stability and pharmacokinetic properties. On the research front, major advances are being made on structural and regulatory biosynthetic genes and metabolic engineering of the pathways involved. New semisynthetic compounds especially those designed to combat resistance development are being examined in the clinic, and unusual non-antibiotic activities of these compounds are being pursued. Although seventy years of age, the β-lactams are not yet ready for retirement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham EP (1957) Biochemistry of some peptide and steroid antibiotics. John Wiley & Sons, Inc., New York

    Google Scholar 

  • Abraham EP, Newton GGF & Hale CW (1954) Isolation and some properties of cephalosporin N, a new penicillin. Biochem. J. 58: 94–102

    Google Scholar 

  • Abraham EP, Newton GGF, Schenck JR, Hargie MP, Olson BH, Schuurmans DM, Fisher MW & Fusari SA (1955) Identity of cephalosporin N and synnematin B. Nature 176: 551

    Google Scholar 

  • Abraham EP, Huddleston JA, Jayatilake GS, O'Sullivan J & White RL (1980) Conversion of δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine to isopenicillin N in cell-free extracts of Cephalosporium acremonium. In: Gregory GI (Ed) Recent Advances in the Chemistry of β-Lactam Antibiotics (pp 125–134). Royal Society of Chemistry, London

    Google Scholar 

  • Albers-Schönberg G, Arisen BH, Hensens OD, Hirshfield J, Hoogsteen K, Kaczka EA, Rhodes RE, Kahan JS, Kahan FM, Ratcliffe RW, Walton E, Ruswinkle LJ, Morin RB & Christensen BF (1978) The structure and absolute configuration of thienamycin. J. Am. Chem. Soc. 100: 6491–6499

    Google Scholar 

  • Alvarez E, Meesschaert B, Montenegro E, Gutiérrez S, Diez B, Barredo JL & Martin JF (1993) The isopenicillin N acyltransferase of P. chrysogenum has isopenicillin N amidohydrolase, 6-aminopenicillanic acid acyltransferase and penicillin amidase activities, all of which are encoded by the single penDE gene. Eur. J. Biochem. 215: 323–332

    Google Scholar 

  • Aoki H, Sakai M, Konomi T, Hosoda J, Kubochi T, Iguchi E & Imanaka H (1976) Nocardicidin A, a new monocyclic β-lactam antibiotic. 1. Discovery, isolation and characterization. J. Antibioti. 29: 492–500

    Google Scholar 

  • Arnoldi A, Cabrini RM, Farina G & Merlini L (1990) Activity of a series of β-lactams against some phytophathogenic fungi. J. Agric. Food Chem. 38: 2197–2199

    Google Scholar 

  • Arnstein HRV & Clubb ME (1957) The biosyntheis of penicillin. Comparison of valine and hydroxyvaline as penicillin precursors. Biochem. J. 65: 618–627

    Google Scholar 

  • Arnstein HRV & Crawhall JC (1957) The biosynthesis of penicillin. 6, A study of the mechanism of the formation of the thiazolidine-β-lactam rings, using tritium-labelled cystine. Biochem. J. 67: 180–187

    Google Scholar 

  • Backus MP & Stauffer JF (1955) The production and selection of a family of strains in Penicillium chrysogenum. Mycologia 47: 429–463

    Google Scholar 

  • Baldwin JE, Jung M, Singh P, Wan T, Haber S, Herchen S, Kitchin J, Demain AL, Hunt NA, Kohsaka M, Konomi T & Yoshida M (1980) Recent biosynthetic studies on β-lactam antibiotics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 298: 169–172

    Google Scholar 

  • Banko G, Demain AL & Wolfe S (1987) δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACV synthetase): a multifunctional enzyme with broad substrate specificity for the synthesis of penicillin and cephalosporin precursors. J Amer Chem Soc 109: 2858–2860

    Google Scholar 

  • Barredo JL, Díez B, Alvarez E & Martín JF (1989) Large amplification of a 35-kb DNA fragment carrying two penicillin biosynthetic genes in high penicillin producing strains of P. chrysogenum. Curr Genet 16: 453–459

    Google Scholar 

  • Batchelor FR, Doyle PD, Nayler JHC & Rolinson GN (1959) Synthesis of penicillin: 6-amino-penicillanic acid in penicillin fermentations. Nature 183: 257–258

    Google Scholar 

  • Black MT & Bruton G (1998) Inhibitors of bacterial signal peptidases. Curr. Pharm. Design 4: 133–154

    Google Scholar 

  • Bost PE & Demain AL (1977) Studies on the cell-free biosynthesis of β-lactam antibiotics. Biochem. J. 162: 681–687

    Google Scholar 

  • Brakhage AA (1997) Molecular regulation of penicillin biosynthesis in Aspergilllus (Emericella) nidulans. FEMS Microbiol Lett 148: 1–10

    Google Scholar 

  • Brakhage AA & Van der Brulle J (1995) Use of reporter genes to identify recessive trans-acting mutations specifically involved in the regulation of Aspergillus nidulans penicillin biosynthetic genes. J. Bacteriol. 177: 2781–2788

    Google Scholar 

  • Brewer SJ, Farthing JE & Turner MK (1977) The oxygenation of the 3-methyl group of 7-β(5-D-aminoadipamido)-3-methylceph-3-em-4-ca rboxylic acid (desacetoxycephalosporin C) by homogenates of Acremonium chrysogenum. Biochem. Soc. Trans. 5: 1024–1025

    Google Scholar 

  • Brewer SJ, Taylor PM & Turner MK (1980) An adenosine triphosphate-dependent carbamoylphosphate-3-hydroxymethylcephem O-carbamoyl-transferase from Streptomyces clavuligerus. Biochem. J. 185: 555–564

    Google Scholar 

  • Brotzu G (1948) Richerche su di un nova antibiotico. Lavori dell' Istituto d'Igiene di Cagliari, pp 1–11

  • Brown AG, Butterworth D, Cole M, Hanscomb G, Hood JD, Reading C & Rolinson CN (1976) Naturally occurring β-lactamase inhibitors with antibacterial activity. J Antibiot 29: 668–669

    Google Scholar 

  • Burton HS & Abraham EP (1951) Isolation of antibiotics from a species of Cephalosporium. Cephalosporins P1, P2, P3, P4 and P5. Biochem. J. 50: 168–174

    Google Scholar 

  • Bush K (1997) Antimicrobial agents. Curr. Opin. Chem. Biol. 1: 169–175

    Google Scholar 

  • Cassidy PJ (1981) Novel naturally occurring β-lactam antibiotics — a review. Dev Ind Microbiol 22: 181–209

    Google Scholar 

  • Chen CW, Lin HF, Kuo CL, Tsai HL & Tsai JFY (1988) Cloning and expression of a DNA sequence conferring cephamycin C production. Bio/Technology 6: 1222–1224

    Google Scholar 

  • Choi K-P, Kim K-H & Kim J-W (1997) Strain improvement of clavulanic acid producing Streptomyces clavuligerus./ Abstract 12P9, Tenth Internal Symp Biol Actinomycetes, Beijing

  • Crawford K, Heatley NG, Boyd PF, Hale CW, Kelly BK, Miller GA & Smith N (1952) Antibiotic production by a species of Cephalosporium. J. Gen. Microbiol. 6: 47–59

    Google Scholar 

  • Davey YF & Johnson MJ (1953) Penicillin production in corn steep media with continuous carbohydrate addition. Appl. Microbiol. 1: 208–211

    Google Scholar 

  • de la Fuente JL, Rumbero A, Martin JF & Liras P (1997) Δ-1-Piperideine-6-carboxylate dehydrogenase, a new enzyme that forms α-aminoadipate in Streptomyces clavuligerus and other cephamycin C producing actinomycetes Abstract 8P7, Tenth Internal. Symp. Biol. Actinomycetes, Beijing

  • Demain AL (1956) Inhibition of penicillin formation by amino acid analogs. Arch. Biochem. Biophys. 64: 74–79

    Google Scholar 

  • Demain AL (1957) Inhibition of penicillin formation by lysine. Arch. Biochem. Biophys. 67: 244–245

    Google Scholar 

  • Demain AL (1959) The mechanism of penicillin biosynthesis. Adv. Appl. Microbiol. 1: 23–47

    Google Scholar 

  • Demain AL (1963a) Biosynthesis of cephalosporin C and its relation to penicillin formation Trans. NY Acad. Sci. 25: 731–740

    Google Scholar 

  • Demain AL (1963b) L-valine: a precursor of cephalosporin C. Biochem. Biophys. Res. Commun. 10: 45–48

    Google Scholar 

  • Demain AL (1967) Biosynthesis of penicillins and cephalosporins. In: Snell J (Ed) Biosynthesis of Antibiotics, V 1 (pp 29–94). Academic Press, New York

    Google Scholar 

  • Demain AL (1981) Biosynthetic manipulations in the development of β-lactam antibiotics. In: Salton MRS & Shockman GD (Eds) β-Lactam Antibiotics: Mode of Action, New Developments and Future Prospects (pp 567–583). Academic Press, New York

    Google Scholar 

  • Demain A.L (1983): Biosynthesis of β-lactam antibiotics. In: Demain AL & Solomon NA, (Eds) Antibiotics Containing the Beta-Lactam Structure, Part 1 (pp 189–228). Springer-Verlag, New York

    Google Scholar 

  • Demain AL, Newkirk JF & Hendlin D (1963) Effect of methionine, norleucine, and lysine derivatives on cephalosporin C formation in chemically defined media. J. Bacteriol. 85: 339–344

    Google Scholar 

  • Demain AL, Kupka J, Shen Y-Q & Wolfe S (1982) Microbiological synthesis of β-lactam antibiotics. In: Umezawa H, Demain AL, Hata T & Hutchinson CR (Eds) Trends in Antibiotic Research (pp 233–247). Japan Antibiot Res Assoc, Tokyo

    Google Scholar 

  • Doherty JB, Shah SK, Finke PE, Dorn CP Jr, Hagmann, WK et al (1993) Chemical, biochemical, pharmacokinetic, and biological properties of L-680,833: A potent, orally active monocyclic β-lactam inhibitor of human polymorphonuclear leukocyte elastase. Proc. Nail. Acad. Sci. USA 90: 8727–8731

    Google Scholar 

  • Drew SW & Demain AL (1977) Effect of primary metabolites on secondary metabolism. Ann. Rev. Microbiol. 31: 343–356

    Google Scholar 

  • Elander RP (1983) Strain improvement and preservation of β-lactam producing microorganisms. In: Demain AL & Solomon NA (Eds) Antibiotics Containing the β-Lactam Structure, Part I (pp 97–146). Springer Verlag, New York

    Google Scholar 

  • Elander RP & Aoki H (1982) β-Lactam-producing microorganisms: their biology and fermentation behavior. In: Morin RB & Gorman M (Eds) The Chemistry and Biology of β-Lactam Antibiotics, V 3 (pp 83–153). Academic Press, New York

    Google Scholar 

  • Elson SW & Oliver RS (1978) Studies on the biosynthesis of clavulanic acid. Incorporation of 13C-labelled precursors. J. Antibiot. 31: 586–592

    Google Scholar 

  • Fang A, Keables P & Demain AL (1996) Unexpected enhancement of β-lactam antibiotic formation in Streptomyces clavuligerus by very high concentrations of exogenous lysine. Appl. Microbiol. Biotechnol. 44: 705–709

    Google Scholar 

  • Fawcett PA, Usher JJ & Abraham EP (1976a) Aspects of cephalosporin and penicillin biosynthesis. In: MacDonald KD (Ed) Second International Symposium on the Genetics of Industrial Microorganisms (pp 129–138). Academic Press, New York

    Google Scholar 

  • Felix HR, Peter HH & Treichler HJ (1981) Microbiological ring expansion of penicillin N. J. Antibiot. 34: 567–575

    Google Scholar 

  • Fleming A (1929) On the antibacterial action of a Penicillium, with special reference to their use in the isolation of B. influenzas. Brit. J. Exp. Pathol. 10: 226–236

    Google Scholar 

  • Florey HW (1955) Antibiotic products of a versatile fungus. Ann. Intern. Med. 43: 480–490

    Google Scholar 

  • Florey HW, Chain EB, Heatley NG, Jennings MA, Sanders AG, Abranam EP & Florey ME (1949) Antibiotics, vol. 2. Oxford University Press, London

    Google Scholar 

  • Friedrich CG & Demain AL (1977) Homocitrate synthase as the crucial site of the lysine effect on penicillin biosynthesis. J Antibiot 30: 160–161

    Google Scholar 

  • Fujisawa Y, Kitano K & Kanzaki T (1975a) Accumulation of deacetoxycephalosporin C by a deacetylcephalosporin C negative mutant of Cephalosporium acremonium. Agric. Biol. Chem. 39: 2049–2055

    Google Scholar 

  • Fujisawa Y, Shirafuji H, Kida M, Nara K, Yoneda M & Kanzaki T (1975b) Accumulation of deacetylcephalosporin C by cephalosporin C negative mutants of Cephalosporium acremonium. Agric Biol Chem 39: 1295–1301

    Google Scholar 

  • Fujisawa Y, Kikuchi M, & Kanzaki T (1977) Deacetylcephalosproin C synthesis by cell-free extracts of Cephalosporium acremonium. J Antibiot 30: 775–777

    Google Scholar 

  • Gottshall RY, Roberts JM, Portwood LM & Jennings JC (1951) Synnematin, an antibiotic produced by Tilachlidium. Proc Soc Exp Biol NY 76: 307–311

    Google Scholar 

  • Grosklags JH & Swift ME (1957) The perfect stage of an antibiotic-producing Cephalosporium. Mycologia 49: 305–317

    Google Scholar 

  • Haas H & Marzluf GA (1995) NRE, the major nitrogen regulatory protein of Penicillium chrysogenum, binds specifically to elements in the intergenic regions of nitrate assimilation and penicillin biosynthetic gene clusters. Curr Genet 28: 177–183

    Google Scholar 

  • Hashimoto M, Konomi T & Kamiya T (1976) Nocardicin A, a new β-lactam antibiotic. 2, Structure determination of nocardicins A and B. J Antibiot 29: 824–830

    Google Scholar 

  • Hook DJ, Chang LT, Blander RP & Morin RB (1979) Stimulation of the conversion of penicillin N to cephalosporin by ascorbic acid, α-ketoglutarate, and ferrous ions in cell-free extracts of strains of Cephalosporium acremonium. Biochem. Biophys. Res. Commun. 87: 258–265

    Google Scholar 

  • Howarth TT, Brown AG & King TJ (1976) Clavulanic acid, a novel β-lactam isolated from Streptomyces clavuligerus; X-ray crystal structure analysis. J. Chem. Soc. Chem. Commun. 266–267

  • Imada A, Kitano K, Kintaka K, Muroi M & Asai M (1981) Sulfazecin, and isosulfazecin, novel β-lactam antibiotics of bacterial origin. Nature 289: 590–591

    Google Scholar 

  • Inamine E & Birnbaum J (1972) Cephamycin C biosynthesis: isotope incorporation studies. Abstr. Ann. Mtg. Amer. Soc. Microbiol. p 12

  • Janc JW, Egan LA & Townsend GA (1995) Purification and characterization of clavaminate synthase from Streptomyces clavuligerus. A multifunctional enzyme of clavam biosynthesis. J. Biol. Chem. 270: 5399–5404

    Google Scholar 

  • Jensen SE & Demain AL (1995) Beta-Lactams. In: Vining LC & Stuttard C (Eds) Genetics and Biochemistry of Antibiotic Production (pp 239–268). Butterworth-Heinemann, Boston

    Google Scholar 

  • Jensen SE, Westlake DWS & Wolfe S (1985) Deacetoxy-cephalosporin C synthetase and deacetoxycephalosporin C hydroxylase are two separate enzymes in Streptomyces clavuligerus. J. Antibiot. 38: 263–265

    Google Scholar 

  • Kahan JS, Kahan FM, Goegelman R, Currie SA, Jackson m, Stapley EO, Miller TW, Miller AK, Hendlin D, Mochales S, Hernandez S, Woodruff HB & Birnbaum J (1979) Thienamycin, a new β-lactam antibiotic. 1, Discovery, taxonomy, isolation and physical properties. J. Antibiot. 32: 1–12

    Google Scholar 

  • Kato K(1953) Occurrence of penicillin-nucleus in culture broths. J. Antibiot. Ser. A 6: 130–136

    Google Scholar 

  • Kennedy J & Turner G (1996) δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. Mol. Gen. Genet. 253: 189–197

    Google Scholar 

  • Konomi T, Herchen S, Baldwin JE, Yoshida M, Hunt NA & Demain AL (1979) Cell-free conversion of δ-(L-aminoadipyl-)L-cysteinyl-D-valine to an antibiotic with properties of isopenicillin N inCephalosporium acremonium. Biochem. J. 184: 427–430

    Google Scholar 

  • Kupka J, Shen Y-Q, Wolfe S & Demain AL (1983a) Studies on the ring-cyclization and ring expansion enzymes of β-lactam biosynthesis in Cephalosporium acremonium. Can. J. Microbiol. 29: 488–496

    Google Scholar 

  • Kupka J, Shen Y-Q, Wolfe S & Demain AL (1983b) Partial purification and properties of the α-ketoglutarate-linked ring expansion enzyme of β-lactam biosynthesis. FEMS Microbiol. Lett. 16: 1–6

    Google Scholar 

  • Lebrihi A, Lefebvre G & Germain P (1988a) A study on the regulation of cephamycin C and expandase biosynthesis by Streptomyces clavuligerus in continuous and batch culture. Appl. Microbiol. Biotechnol. 28: 39–43

    Google Scholar 

  • Lebrihi A, Lefebvre G & Germain P (1988b) Carbon catabolite regulation of cephamycin C and expandase biosynthesis in Streptomyces clavuligerus. Appl. Microbiol. Biotechnol. 28: 44–51

    Google Scholar 

  • Liersch M, Nüesch J & Treichler HJ (1976) Final steps in the biosynthesis of cephalosporin C. In: MacDonald KD (Ed) Second International Symposium on the Genetics of Industrial Microorganisms (pp 179–195), Academic Press, New York

    Google Scholar 

  • Liggett RW & Koffler, H (1948) Corn-steep liquor in microbiology. Bacteriol. Revs. 12: 297–311

    Google Scholar 

  • Lilley G, Clark AE & Lawrence GC (1981) Control of the production of cephamycin C and thienamycin byStreptomyces cattleya NRRL 8057. J. Chem. Tech. Biotechnol. 31: 127–134

    Google Scholar 

  • Malmberg L-H & Hu W-S (1992) Identification of rate-limiting steps in cephalosporin C biosynthesis in Cephalosporium acremonium: a theoretical analysis. Appl. Microbiol. Biotechnol. 38: 122–128

    Google Scholar 

  • Malmberg L-H, Hu W-S & Sherman DH (1993) Precursor flux control through targeted chromosomal insertion of the lysine ε-aminotransferase (lat) gene in cephamycin C biosynthesis. J. Bacteriol. 175: 6916–6924

    Google Scholar 

  • Martin JF, Gutiérrez S & Demain AL (1997) β-Lactams. In: Anke T (Ed) Fungal Biotechnology (pp 91–127), Chapman & Hall, Weinheim

    Google Scholar 

  • Mathison L, Soliday C, Stepan T, Aldrich T & Rambosek J (1993) Cloning, characterization, and use in strain improvement of the Cephalosporium acremonium gene cefG encoding acetyltransferase. Curr. Genet. 23: 33–41

    Google Scholar 

  • Matsuda A, Sugiura H, Matsuyama K, Matsumoto H, Ichikawa S & Komatsu K-I (1992) Molecular cloning of acetyl coenzyme A:deacetylcephalosporin C O-acetyltransferase cDNA from Acremonium chrysogenum: Sequence and expression of catalytic activity in yeast. Biochem. Biophys. Res. Commun. 182: 995–1001

    Google Scholar 

  • Mead TH & Stack MV (1948) Penicillin precursors in cornsteep liquor. Biochem J 42: xviii

    Google Scholar 

  • Mendelovitz S & Aharonowitz Y (1982) Regulation of cephamycin C synthesis, aspartokinase, dihydrodipicolinic acid synthetase, and homoserine dehydrogenase by aspartic acid family amino acids in Streptomyces clavuligerus. Antimicrob Agents Chemother. 21: 74–84

    Google Scholar 

  • Miller GA, Kelly BK & Newton GGF (1956) Cephalosporin production. British patent 759, 624

  • Miller IM, Stapley EO & Chaiet L (1962) Production of synnematin B by a member of the genus Streptomyces. Bacteriol. Proc. 49: 32

    Google Scholar 

  • Moyer AJ & Coghill RD (1946a) Penicillin VIII. Production of penicillin in surface cultures. J. Bacteriol. 51: 57–78

    Google Scholar 

  • Moyer AJ & Coghill RD (1946b) Penicillin IX. The laboratory scale production of penicillin in submerged cultures by Penicillium notatum Westling (NRRL 832). J. Bacteriol. 51: 79–93

    Google Scholar 

  • Nagarajan R, Boeck LD, Gorman M, Hamill RL, Higgens CH, Hoehn MM, Stark WM & Whitney JG (1971) β-Lactam antibiotics from Streptomyces. J. Amer. Chem. Soc. 93: 2308–2310

    Google Scholar 

  • Napier EJ, Evans JR, Noble D, Bushell ME, Wells g & Brown D (1981) Clavam derivatives. Brit. Pat. 1585661

  • Neuss N, Nash CH, Baldwin JE, Lemke PA & Grutzner JB (1973) Incorporation of (2RS, 3R) [4-13 C] valine into cephalosporin C. J. Amer. Chem. Soc. 95: 3797

    Google Scholar 

  • Newton GGF & Abraham EP (1955) Cephalosporin C, a new antibiotic containing sulfur and D-α-aminoadipic acid. Nature 175: 548

    Google Scholar 

  • Nielsen J & Jorgensen HS (1995) Metabolic control analysis of the penicillin biosynthetic pathway in a high-yielding strain of Penicillium chrysogenum. Biotechnol. Prog. 11: 299–305

    Google Scholar 

  • Olson BH, Jennings JC & Junek AJ (1953) Separation of synnematin into components A and B by paper chromatography. Science 117: 76–77

    Google Scholar 

  • Osono T, Watanabe S, Saito T, Gushima H, Murakami K, Tokohashi I, Yamaguchi H, Sasaki T, Susaki K, Tokamera S, Miyoshi T & Oka Y (1980) Oganomycins, new 7-methoxycephalosporins produced by precursor fermentation with heterocyclic thiols. J. Antibiot. 33: 1074–1078

    Google Scholar 

  • O'Sullivan J.& Abraham EP (1980) The conversion of cephalosporins to 7α-methoxycephalosporins by cell-free extracts of Streptomyces clavuligerus. Biochem. J. 186: 613–616

    Google Scholar 

  • O'Sullivan J, Bleaney RC, Huddleston JA & Abraham EP (1979) Incorporation of 3H from δ-(L-α-amino-[4,5–3H] adipyl)-L-cysteinyl-D-[4,4–3H] valine into isopenicillin N. Biochem. J. 184: 421–426

    Google Scholar 

  • Peñalva MA, Vian A, Patiño C, Pérez-Aranda A & Ramón D (1989) Molecular biology of penicillin production in Aspergillus nidulans. In: Hershberger CL, Queener SW & Hegeman G (Eds) Genetics and Molecular Biology of Industrial Microorganisms (pp 256–61), American Society for Microbiology Press, Washington, DC

    Google Scholar 

  • Perez-Esteban B, Gomez-Pardo E & Penalva MA (1995) A lacZ reporter fusion method for the genetic analysis of regulatory mutations in pathways of fungal secondary metabolism and its application to the Aspergillus nidulans penicillin pathway. J. Bacteriol. 177: 6069–6076

    Google Scholar 

  • Perez-Llarena FJ, Liras P, Rodriguez-Garcia A & Martin JF (1997) A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus. Amplification results in overproduction of both β-lactam compounds. J. Bacteriol. 179: 2053–2059

    Google Scholar 

  • Perez-Redondo R, Rodriguez-Garcia A, Martin JF & Liras P (1998) The claR gene of Streptomyces clavuligerus, encoding a LysR-type regulatory protein controlling clavulanic acid biosynthesis is linked to the clavulanate-9-aldehyde reductase (car) gen. Gene 211: 311–321

    Google Scholar 

  • Raper KB (1946) The development of improved penicillin-producing molds. Ann. NY. Acad. Sci. 48: 41–56

    Google Scholar 

  • Rius N, Maeda K & Demain AL (1996) Induction of L-lysine ε-aminotransferase by L-lysine in Streptomyces clavuligerus, producer of cephalosporins. FEMS Microbiol Lett 144: 207–211

    Google Scholar 

  • Roberts JM (1952) Antibiotic substances produced by species of Cephalosporium with a description of new species. Mycologia 44: 292–306

    Google Scholar 

  • Röhl F, Rabenhorst J & Zähner H (1987) Biological properties and mode of action of clavams. Arch. Microbiol. 147: 315–320

    Google Scholar 

  • Samson SM, Belagaje R, Blankenship DT, Chapman JL, Perry D, Skatrud PL, Frank RM, Abraham EP, Baldwin JE, Queener SW & Ingolia TD (1985) Isolation, sequence determination and expression in E. coli of the isopenicillin N synthetase gene from Cephalosporium acremonium. Nature 318: 191–194

    Google Scholar 

  • Sawada Y, Hunt NA & Demain AL (1979) Further studies on microbiological ring expansion of penicillin N. J. Antibiot. 32: 1303–1310

    Google Scholar 

  • Sawada Y, Baldwin JE, Singh PD, Solomon NA & Demain AL (1980a) Cell-free cyclization of δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine to isopenicillin N. Antimicrob Agents Chemother. 18: 465–470

    Google Scholar 

  • Sawada Y, Konomi T, Solomon NA & Demain AL (1980b) Increase in activity of β-lactam synthetases after growth of Cephalosporium acremonium with methionine or norleucine. FEMS Microbiol. Lett. 9: 281–284

    Google Scholar 

  • Scheidegger A, Kuenzi MT & Nüesch J (1984) Partial purification and catalytic properties of a bifunctional enyzme in the biosynthetic pathway of β-lactams in Cephalosporium acremonium. J. Antibiot. 37: 522–531

    Google Scholar 

  • Shah AJ, Tilburn J, Adlard MW & Arst NH Jr (1991) pH regulation of penicillin production in Aspergillus nidulans. FEMS Microbiol. Lett. 77: 209–212

    Google Scholar 

  • Shoji J, Kato T, Sakazaki R, Nagata W, Terui Y, Nakagawa Y, Shiro m, Matsumoto K, Hattori T, Yoshida T & Kondo E (1984) Chitinovorins A, B, and C, novel ß-lactam antibiotics of bacterial origin. J. Antibiot. 37: 1486–1490

    Google Scholar 

  • Skatrud PL, Tietz AJ, Ingolia TD, Cantwell CA, Fisher DL, Chapman JL & Queener SW (1989) Use of recombinant DNA to improve production of cephalosporin C by Cephalosporium acremonium. Bio/Technology 7: 477–485

    Google Scholar 

  • Smith DJ, Bull JH, Edwards J & Turner G (1989) Amplification of the isopenicillin N synthetase gene in a strain of Penicillium chrysogenum producing high levels of penicillin. Mol. Gen. Genet. 216: 492–497

    Google Scholar 

  • Somerson NL, Demain AL & Nunheimer TD (1961) Reversal of lysine inhibition of penicillin production by α-aminoadipic acid. Arch. Biochem. Biophys. 93: 238–241

    Google Scholar 

  • Stapley EO, Jackson M, Hernandez S. Zimmerman SB, Currie SA, Mochalis S, Mahta JM, Woodruff HB & Hendlin D (1972) Cephamycins, a new family of β-lactam antibiotics. 1. Production by actinomycetes, including Streptomyces lactamdurans sp. n. Antimicrob. Agents Chemother. 2: 122–131

    Google Scholar 

  • Stapley EO, Birnbaum J, Miller AK, Wallick H, Hendlin D & Woodruff HB (1979) Cefoxitin and cephamycins: microbiological studies. Rev. Inf. Dis. 1: 73–87

    Google Scholar 

  • Stevens CM, Inamine E & Belong CW (1956) The rates of incorporation of L-cysteine and D-and L-Valine in penicillin biosynthesis. J. Biol. Chem. 219: 405–409

    Google Scholar 

  • Stevens CM & Belong CW (1958) Valine metabolism and penicillin biosynthesis. J. Biol. Chem. 230: 991–999

    Google Scholar 

  • Sykes RB, Cimarusti CM, Bonner DP, Bush K, Floyd DM, Georgopapdakou NH, Koster WH, Liu WC, Parker WL, Principe PA, Rathnum ML, Slusarchyk WA, Trejo WH & Wells JS (1981) Monocyclic β-lactam antibiotics produced by bacteria. Nature 291: 489–491

    Google Scholar 

  • Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Peñalva MA & Arst HN Jr (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acidic-and alkaline-expressed genes by ambient pH. EMBO J 14: 779–790

    Google Scholar 

  • Trown PW, Abraham EP, Newton GGF, Hale CW & Miller GA (1962) Incorporation of acetate into cephalosporin C. Biochem. J. 84: 157–166

    Google Scholar 

  • Trown PW, Smith B & Abraham EP (1963a) Biosynthesis of cephalosporin C from amino acids. Biochem. J. 86: 284–291

    Google Scholar 

  • Trown PW, Sharp M & Abraham EP (1963b) α-Oxoglutarate as a precursor of the D-α-aminoadipic residue in cephalosporin C. Biochem. J. 86: 280–284

    Google Scholar 

  • Tsubotani S, Hida T, Kasahara F, Wada Y & Harada S (1984) Cephabacins, new cephem antibiotics of bacterial origin. 3, Structural determination. J. Antibiot. 37: 1546–1554

    Google Scholar 

  • Tsubotani S, Hida T, Ono H & Harada S (1985) Cephabacin M1–6, new 7-methyoxycephem antibiotics of bacterial origin. 2, Isolation, characterization and structure determination. J. Antibiot. 38: 1152–1165

    Google Scholar 

  • Uyeda M & Demain AL (1988) Methionine inhibition of thienamycin formation. J. Indust. Microbiol. 3: 57–59

    Google Scholar 

  • Velasco J, Gutierrez S, Fernandez FJ, Marcos AT, Arenos C & Martin JF (1994) Exogenous methionine increases levels of mRNAs transcribed from pcbAB, pcbC, and cefEF genes, encoding enzymes of the cephalosporin biosynthetic pathway, in Acremonium chrysogenum. J. Bacteriol. 176: 985–991

    Google Scholar 

  • Whitney JD, Brannon DR, Mabe JA & Wicker KJ (1972) Incorporation of labeled precursor into A16886B, a novel β-lactam antibiotic produced by Streptomyces clavuligerus. Antimicrob. Agents Chemother. 1: 247–251

    Google Scholar 

  • Williamson JM (1986) The biosynthesis of thienamycin and related carbapenems. Crit. Revs. Biotechnol. 4: 111–131

    Google Scholar 

  • Yoshida M, Konomi T, Kohsaka M, Baldwin JE, Herchen S, Singh P, Hunt NA & Demain AL (1978) Cell-free ring expansion of penicillin N to deacetoxycephalosporin C by Cephalosporium acremonium CW-19 and its mutants. Proc. Natl. Acad. Sci. USA 75: 6253–6257

    Google Scholar 

  • Zhang J (1991) ACV synthetase in cephalosporin biosynthesis, Ph.D. thesis. Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Zhang J & Demain AL (1992) ACV synthetase. Crit. Rev. Biotechnol. 12: 245–260

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold L. Demain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demain, A.L., Elander, R.P. The β-lactam antibiotics: past, present, and future. Antonie Van Leeuwenhoek 75, 5–19 (1999). https://doi.org/10.1023/A:1001738823146

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001738823146

Navigation