Skip to main content
Log in

Santa Rosalia revisited: Why are there so many species of bacteria?

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The diversity of bacteria in the world is very poorly known. Usually less than one percent of the bacteria from natural communities can be grown in the laboratory. This has caused us to underestimate bacterial diversity and biased our view of bacterial communities. The tools are now available to estimate the number of bacterial species in a community and to estimate the difference between communities. Using what data are available, I have estimated that thirty grams of forest soil contains over half a million species. The species difference between related communities suggests that the number of species of bacteria may be more than a thousand million. I suppose that the explanation for such a large number of bacterial species is simply that speciation in bacteria is easy and extinction difficult, giving a rate of speciation higher than the rate of extinction, leading to an ever increasing number of species over time. The idea that speciation is easy is justified from the results of recent experimental work in bacterial evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bennett AF, Lenski RE & Mittler JE (1992) Evolutionary adaptation to temperature. I Fitness responses of Escherichia colito changes in its thermal environment. Evolution 46: 16-30

    Google Scholar 

  • Caccone A, DeSalle R & Powell JR (1988) Calibration in the change in thermal stability of DNA duplexes and degree of base pair mismatch. J. Mol. Evol. 27: 212-216

    Google Scholar 

  • Cohan FM (1994) The effects of rare but promiscuous genetic exchange on evolutionary divergence in prokaryotes. Am. Nat. 143: 965-986

    Google Scholar 

  • Cohan FM (1995) Does recombination constrain neutral divergence among bacterial taxa? Evolution 49: 164-175

    Google Scholar 

  • Dean AM (1995) A molecular investigation of genotype by environment interactions. Genetics 139: 19-33

    Google Scholar 

  • Dykhuizen DE & Dean AM (1994) Predicted fitness changes along and environmental gradient. Evol. Ecol. 8: 1-18

    Google Scholar 

  • Fisher RA, Corbert AS & Williams CB (1943) The relation between the number of individuals and the number of species in a random sample of an animal population. J. Anim. Ecol. 12: 42-58

    Google Scholar 

  • Griffiths BS, Ritz K & Glover LA (1996) Broad-scale approaches to the determination of siol microbial community structure: Application of the community DNA hybridization technique. Microb. Ecol. 31: 269-280

    Google Scholar 

  • Helling RB, Vargas C & Adams J (1987) Evolution of Escherichia coliduring growth in a constant environment. Genetics 116: 349-358

    Google Scholar 

  • Hoke C & Vedros NA (1982) Taxonomy of the Neisseriae: Deoxyribonucleic acid base composition, interspecific transformation, and deoxyribonucleic acid hybridization. Int. J. Syst. Bacteriol. 32: 57-66

    Google Scholar 

  • Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am. Nat. 93: 143-159

    Google Scholar 

  • Jiménez L (1990) Molecular analysis of deepsubsurface bacteria. Appl. Environ. Microbiol. 56: 2108-2113

    Google Scholar 

  • Lee S & Fuhrman JA (1990) DNA hybridization to compare species composition of natural bacterioplankton assemblages. Appl. Environ. Microbiol. 56: 739-746

    Google Scholar 

  • Lenski RE & Bennett AF (1993) Evolutionary response of Escherichia colito thermal stress. Am. Nat. 142: S47-64

    Google Scholar 

  • Lenski RE, Rose MR, Simpson SC & Tadler SC (1991) Longterm experimental evolution in Escherichia coli.I. Adaptation and divergence during 2,000 generations. Am. Nat. 138: 1315-1341

    Google Scholar 

  • Lin C & Stahl DA (1995) Taxonspecific probes for the cellulolytic genus Fibrobacterreveal abundant and novel equine-associated populations. Appl. Environ. Microbiol. 61: 1348-1351

    Google Scholar 

  • Maynard Smith J (1995) Do bacteria have population genetics? In: Baumberg S, Young JPW, Wellington EMH and Saunders JR (eds.) Population Genetics of Bacteria (pp 112). Cambridge University Press, Cambridge

    Google Scholar 

  • Ochman H & Wilson AC (1987) Evolution in bacteria: Evidence for a universal substitution rate in cellular genomes. J.Mol. Evol. 26: 74-86

    Google Scholar 

  • Ochman H & Selander RK (1984) Standard reference strains of Escherichia colifrom natural populations. J. Bacteriol. 157: 690- 693

    Google Scholar 

  • Patrick R (1968) The structure of diatom communities in similar ecological conditions. Am. Nat. 102: 173-183

    Google Scholar 

  • Pielou EC & Matthewman WG (1966) The fauna of Fomes fomentarius(Linnaeus ex Fries) Kieckx. growing on dead birch in Gatineau Park, Quebec. Can. Ent. 98: 1308-1312

    Google Scholar 

  • Preston FW (1948) The commonness, and rarity, of species. Ecology 29: 254-283

    Google Scholar 

  • Preston FW (1962) The canonical distribution of commonness and rarity. Ecology 43: 185-215, 410-432

    Google Scholar 

  • Rosenzweig RF, Sharp RR, Treves DS & Adams J (1994) Microbial evolution in a simple unstructured environment: Genetic differentiation in Escherichia coli.Genetics 137: 903-917

    Google Scholar 

  • Saunders AA (1938) Ecology of the birds of Quaker Run Valley, Allegany State Park, New York. New York State Museum Handbook 16. Albany, N. Y.

  • Sepkoski JJ, Jr (1984) A kinetic model of Phanerozoic taxonomic diversity III. PostPaleozoic families and mass extinction. Paleobiology 10: 246-267

    Google Scholar 

  • Shen P & Huang HV (1986) Homologous recombination in Escherichia coli: Dependence on substrate length and homology. Genetics 112: 441-457

    Google Scholar 

  • Silva PJN (1992) Natural selection of the lacoperon of Escherichia coli.Ph.D. Thesis. State University of New York at Stony Brook. 153 pp

    Google Scholar 

  • Spratt BG, Smith NH, Zhou J, O'Rourke M & Feil E (1995) The population genetics of pathogenic Neisseria. In: Baumberg S, Young JPW, Wellington EMH and Saunders JR (eds.) Population Genetics of Bacteria (pp 143-160). Cambridge University Press, Cambridge

    Google Scholar 

  • Stahl DA (1995) Application of phylogenetically based hybridization probes to microbial ecology. Molec. Ecol. 4: 535-542

    Google Scholar 

  • Sugihara G (1980) Minimal community structure: An explanation of species abundance patterns. Am. Nat. 116: 770-787

    Google Scholar 

  • Torsvik V, Goksøyr J & Daae FL (1990a) High diversity of DNA in soil bacteria. Appl. Environ. Microbiol. 56: 782-787

    Google Scholar 

  • Torsvik V, Salte K, Sørheim R & Goksøyr J (1990b) Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl. Environ. Microbiol. 56: 776-781

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Murry RGE, Stackebrant E, Starr MP & Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dykhuizen, D.E. Santa Rosalia revisited: Why are there so many species of bacteria?. Antonie Van Leeuwenhoek 73, 25–33 (1998). https://doi.org/10.1023/A:1000665216662

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000665216662

Navigation