Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-04T17:51:59.052Z Has data issue: false hasContentIssue false

Scavenger receptor class B type I and the hypervariable region-1 of hepatitis C virus in cell entry and neutralisation

Published online by Cambridge University Press:  14 April 2011

Viet Loan Dao Thi
Affiliation:
Université de Lyon, INSERM and Ecole Normale Supérieure de Lyon, Lyon, France.
Marlène Dreux*
Affiliation:
Université de Lyon, INSERM and Ecole Normale Supérieure de Lyon, Lyon, France.
François-Loïc Cosset*
Affiliation:
Université de Lyon, INSERM and Ecole Normale Supérieure de Lyon, Lyon, France.
*
*These authors contributed equally to the review. Corresponding authors: François-Loïc Cosset and Marlène Dreux, ENS de Lyon, 46 Allée d'Italie, 69007 Lyon, France. E-mail: flcosset@ens-lyon.fr and marlene.dreux@ens-lyon.fr
*These authors contributed equally to the review. Corresponding authors: François-Loïc Cosset and Marlène Dreux, ENS de Lyon, 46 Allée d'Italie, 69007 Lyon, France. E-mail: flcosset@ens-lyon.fr and marlene.dreux@ens-lyon.fr

Abstract

Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease worldwide and represents a major public health problem. Viral attachment and entry – the first encounter of the virus with the host cell – are major targets of neutralising immune responses. Thus, a detailed understanding of the HCV entry process offers interesting opportunities for the development of novel therapeutic strategies. Different cellular or soluble host factors mediate HCV entry, and considerable progress has been made in recent years to decipher how they induce HCV attachment, internalisation and membrane fusion. Among these factors, the scavenger receptor class B type I (SR-BI/SCARB1) is essential for HCV replication in vitro, through its interaction with the HCV E1E2 surface glycoproteins and, more particularly, the HVR1 segment located in the E2 protein. SR-BI is an interesting receptor because HCV, whose replication cycle intersects with lipoprotein metabolism, seems to exploit some aspects of its physiological functions, such as cholesterol transfer from high-density lipoprotein (HDL), during cell entry. SR-BI is also involved in neutralisation attenuation and therefore could be an important target for therapeutic intervention. Recent results suggest that it should be possible to identify inhibitors of the interaction of HCV with SR-BI that do not impair its important physiological properties, as discussed in this review.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Shepard, C.W., Finelli, L. and Alter, M.J. (2005) Global epidemiology of hepatitis C virus infection. Lancet Infectious Disease 5, 558-567CrossRefGoogle ScholarPubMed
2Lindenbach, B.D. and Rice, C.M. (2001) Flaviviridae: The Viruses and Their Replication. In Fields Virology, 5th Edn, (Knipe, D.M. and Howley, P.M., Eds), pp. 1101-1152, Lippincott Williams & Wilkins, Philadelphia, PAGoogle Scholar
3Penin, F. et al. (2004) Structural biology of hepatitis C virus. Hepatology 39, 5-19CrossRefGoogle ScholarPubMed
4Cocquerel, L. et al. (1999) The transmembrane domain of hepatitis C virus glycoprotein E1 is a signal for static retention in the endoplasmic reticulum. Journal of Virology 73, 2641-2649CrossRefGoogle ScholarPubMed
5Cocquerel, L. et al. (1998) A retention signal necessary and sufficient for endoplasmic reticulum localization maps to the transmembrane domain of hepatitis C virus glycoprotein E2. Journal of Virology 72, 2183-2191CrossRefGoogle Scholar
6Cocquerel, L. et al. (2000) Charged residues in the transmembrane domains of hepatitis C virus glycoproteins play a major role in the processing, subcellular localization, and assembly of these envelope proteins. Journal of Virology 74, 3623-3633CrossRefGoogle Scholar
7Murray, C.L., Jones, C.T. and Rice, C.M. (2008) Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nature Reviews. Microbiology 6, 699-708CrossRefGoogle ScholarPubMed
8Andre, P. et al. (2002) Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. Journal of Virology 76, 6919-6928CrossRefGoogle ScholarPubMed
9Bradley, D. et al. (1991) Hepatitis C virus: buoyant density of the factor VIII-derived isolate in sucrose. Journal of Medical Virology 34, 206-208CrossRefGoogle ScholarPubMed
10Hijikata, M. et al. (1993) Equilibrium centrifugation studies of hepatitis C virus: evidence for circulating immune complexes. Journal of Virology 67, 1953-1958CrossRefGoogle ScholarPubMed
11Nielsen, S.U. et al. (2006) Association between hepatitis C virus and very-low-density lipoprotein (VLDL)/LDL analyzed in iodixanol density gradients. Journal of Virology 80, 2418-2428CrossRefGoogle ScholarPubMed
12Thomssen, R. et al. (1992) Association of hepatitis C virus in human sera with beta-lipoprotein. Medical Microbiology and Immunology 181, 293-300CrossRefGoogle Scholar
13Felmlee, D.J. et al. Intravascular transfer contributes to postprandial increase in numbers of very-low-density hepatitis C virus particles. Gastroenterology 139, 1774-1783, 1783 e1771–1776CrossRefGoogle Scholar
14Burlone, M.E. and Budkowska, A. (2009) Hepatitis C virus cell entry: role of lipoproteins and cellular receptors. Journal of General Virology 90, 1055-1070CrossRefGoogle ScholarPubMed
15Andre, P. et al. (2005) Hepatitis C virus particles and lipoprotein metabolism. Seminars in Liver Disease 25, 93-104CrossRefGoogle ScholarPubMed
16Icard, V. et al. (2009) Secretion of hepatitis C virus envelope glycoproteins depends on assembly of apolipoprotein B positive lipoproteins. PLoS One 4, e4233CrossRefGoogle ScholarPubMed
17Bartenschlager, R. et al. (2011) Assembly of infectious hepatitis C virus particles. Trends in Microbiology 19, 95-103CrossRefGoogle ScholarPubMed
18Meunier, J.C. et al. (2008) Apolipoprotein c1 association with hepatitis C virus. Journal of Virology 82, 9647-9656CrossRefGoogle ScholarPubMed
19Maillard, P. et al. (2006) The interaction of natural hepatitis C virus with human scavenger receptor SR-BI/Cla1 is mediated by ApoB-containing lipoproteins. FASEB Journal 20, 735-737CrossRefGoogle ScholarPubMed
20Prince, A.M. et al. (1996) Visualization of hepatitis C virions and putative defective interfering particles isolated from low-density lipoproteins. Journal of Viral Hepatitis 3, 11-17CrossRefGoogle ScholarPubMed
21Agnello, V. et al. (1999) Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proceedings of the National Academy of Sciences of the United States of America 96, 12766-12771CrossRefGoogle ScholarPubMed
22Molina, S. et al. (2007) The low-density lipoprotein receptor plays a role in the infection of primary human hepatocytes by hepatitis C virus. Journal of Hepatology 46, 411-419CrossRefGoogle Scholar
23Rumin, S. et al. (1999) Dynamic analysis of hepatitis C virus replication and quasispecies selection in long-term cultures of adult human hepatocytes infected in vitro. Journal of General Virology 80 (Pt 11), 3007-3018CrossRefGoogle ScholarPubMed
24Fournier, C. et al. (1998) In vitro infection of adult normal human hepatocytes in primary culture by hepatitis C virus. Journal of General Virology 79 (Pt 10), 2367-2374Google Scholar
25Lindenbach, B.D. et al. (2005) Complete replication of hepatitis C virus in cell culture. Science 309, 623-626CrossRefGoogle ScholarPubMed
26Wakita, T. et al. (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nature Medicine 11, 791-796CrossRefGoogle ScholarPubMed
27Zhong, J. et al. (2005) Robust hepatitis C virus infection in vitro. Proceedings of the National Academy of Sciences of the United States of America 102, 9294-9299CrossRefGoogle ScholarPubMed
28Bartosch, B., Dubuisson, J. and Cosset, F.L. (2003) Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes. Journal of Experimental Medicine 197, 633-642CrossRefGoogle ScholarPubMed
29Drummer, H.E., Maerz, A. and Poumbourios, P. (2003) Cell surface expression of functional hepatitis C virus E1 and E2 glycoproteins. FEBS Letters 546, 385-390CrossRefGoogle ScholarPubMed
30Hsu, M. et al. (2003) Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proceedings of the National Academy of Sciences of the United States of America 100, 7271-7276CrossRefGoogle ScholarPubMed
31Podevin, P. et al. (2010) Production of infectious hepatitis C virus in primary cultures of human adult hepatocytes. Gastroenterology 139, 1355-1364CrossRefGoogle ScholarPubMed
32Yi, M. et al. (2007) Compensatory mutations in E1, p7, NS2, and NS3 enhance yields of cell culture-infectious intergenotypic chimeric hepatitis C virus. Journal of Virology 81, 629-638CrossRefGoogle ScholarPubMed
33Gastaminza, P., Kapadia, S.B. and Chisari, F.V. (2006) Differential biophysical properties of infectious intracellular and secreted hepatitis C virus particles. Journal of Virology 80, 11074-11081CrossRefGoogle ScholarPubMed
34Bankwitz, D. et al. (2010) Hepatitis C virus hypervariable region 1 modulates receptor interactions, conceals the CD81 binding site, and protects conserved neutralizing epitopes. Journal of Virology 84, 5751-5763CrossRefGoogle ScholarPubMed
35Grove, J. et al. (2008) Identification of a residue in hepatitis C virus E2 glycoprotein that determines scavenger receptor BI and CD81 receptor dependency and sensitivity to neutralizing antibodies. Journal of Virology 82, 12020-12029CrossRefGoogle ScholarPubMed
36Lindenbach, B.D. et al. (2006) Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proceedings of the National Academy of Sciences of the United States of America 103, 3805-3809CrossRefGoogle ScholarPubMed
37Merz, A. et al. (2011) Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome. Journal of Biological Chemistry 286, 3018-3032CrossRefGoogle ScholarPubMed
38Gastaminza, P. et al. (2008) Cellular determinants of hepatitis C virus assembly, maturation, degradation, and secretion. Journal of Virology 82, 2120-2129CrossRefGoogle ScholarPubMed
39Chang, K.S. et al. (2007) Human apolipoprotein e is required for infectivity and production of hepatitis C virus in cell culture. Journal of Virology 81, 13783-13793CrossRefGoogle ScholarPubMed
40Huang, H. et al. (2007) Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proceedings of the National Academy of Sciences of the United States of America 104, 5848-5853CrossRefGoogle ScholarPubMed
41Jiang, J. and Luo, G. (2009) Apolipoprotein E but not B is required for the formation of infectious hepatitis C virus particles. Journal of Virology 83, 12680-12691CrossRefGoogle Scholar
42Cun, W., Jiang, J. and Luo, G. (2010) The C-terminal alpha-helix domain of apolipoprotein E is required for interaction with nonstructural protein 5A and assembly of hepatitis C virus. Journal of Virology 84, 11532-11541CrossRefGoogle ScholarPubMed
43Hishiki, T. et al. (2010) Infectivity of hepatitis C virus is influenced by association with apolipoprotein E isoforms. Journal of Virology 84, 12048-12057CrossRefGoogle ScholarPubMed
44Owen, D.M. et al. (2009) Apolipoprotein E on hepatitis C virion facilitates infection through interaction with low-density lipoprotein receptor. Virology 394, 99-108CrossRefGoogle ScholarPubMed
45Benga, W.J. et al. (2010) Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles. Hepatology 51, 43-53CrossRefGoogle ScholarPubMed
46Lavillette, D. et al. (2006) Hepatitis C virus glycoproteins mediate low pH-dependent membrane fusion with Liposomes. Journal of Biological Chemistry 281, 3909-3917CrossRefGoogle ScholarPubMed
47Lavillette, D. et al. (2007) Characterization of fusion determinants points to the involvement of three discrete regions of both E1 and E2 glycoproteins in the membrane fusion process of hepatitis C virus. Journal of Virology 81, 8752-8765CrossRefGoogle Scholar
48Flint, M. et al. (2004) Characterization of infectious retroviral pseudotype particles bearing hepatitis C virus glycoproteins. Journal of Virology 78, 6875-6882CrossRefGoogle ScholarPubMed
49Bartosch, B. et al. (2005) An interplay between hypervariable region 1 of the hepatitis C virus E2 glycoprotein, the scavenger receptor BI, and high-density lipoprotein promotes both enhancement of infection and protection against neutralizing antibodies. Journal of Virology 79, 8217-8229CrossRefGoogle ScholarPubMed
50Dreux, M. et al. (2007) The exchangeable apolipoprotein ApoC-I promotes membrane fusion of hepatitis C virus. Journal of Biological Chemistry 282, 32357-32369CrossRefGoogle ScholarPubMed
51Dreux, M. et al. (2006) High density lipoprotein inhibits hepatitis C virus neutralising antibodies by stimulating cell entry via activation of the scavenger receptor BI. Journal of Biological Chemistry 281, 18285-18295CrossRefGoogle ScholarPubMed
52Voisset, C. et al. (2005) High density lipoproteins facilitate hepatitis C virus entry through the scavenger receptor class B type I. Journal of Biological Chemistry 280, 7793-7799CrossRefGoogle ScholarPubMed
53Meunier, J.C. et al. (2005) Evidence for cross-genotype neutralization of hepatitis C virus pseudo-particles and enhancement of infectivity by apolipoprotein C1. Proceedings of the National Academy of Sciences of the United States of America 102, 4560-4565CrossRefGoogle ScholarPubMed
54Cocquerel, L., Voisset, C. and Dubuisson, J. (2006) Hepatitis C virus entry: potential receptors and their biological functions. Journal of General Virology 87, 1075-1084CrossRefGoogle ScholarPubMed
55Bartosch, B. and Cosset, F.-L. (2006) Cell entry of hepatitis C virus. Virology 348, 1-12CrossRefGoogle ScholarPubMed
56Dubuisson, J., Helle, F. and Cocquerel, L. (2008) Early steps of the hepatitis C virus life cycle. Cellular Microbiology 10, 821-827CrossRefGoogle ScholarPubMed
57von Hahn, T. and Rice, C.M. (2008) Hepatitis C virus entry. Journal of Biological Chemistry 283, 3689-3693CrossRefGoogle ScholarPubMed
58Barth, H. et al. (2006) Viral and cellular determinants of the hepatitis C virus envelope-heparan sulfate interaction. Journal of Virology 80, 10579-10590CrossRefGoogle ScholarPubMed
59Scarselli, E. et al. (2002) The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO Journal 21, 5017-5025CrossRefGoogle Scholar
60Pileri, P. et al. (1998) Binding of hepatitis C virus to CD81. Science 282, 938-941CrossRefGoogle ScholarPubMed
61Evans, M.J. et al. (2007) Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446, 801-805CrossRefGoogle ScholarPubMed
62Ploss, A. et al. (2009) Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457, 882-886CrossRefGoogle ScholarPubMed
63Liu, S. et al. (2009) Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. Journal of Virology 83, 2011-2014CrossRefGoogle ScholarPubMed
64Blanchard, E. et al. (2006) Hepatitis C virus entry depends on clathrin-mediated endocytosis. Journal of Virology 80, 6964-6972CrossRefGoogle ScholarPubMed
65Meertens, L., Bertaux, C. and Dragic, T. (2006) Hepatitis C virus entry requires a critical postinternalization step and delivery to early endosomes via clathrin-coated vesicles. Journal of Virology 80, 11571-11578CrossRefGoogle ScholarPubMed
66Mee, C.J. et al. (2008) Effect of cell polarization on hepatitis C virus entry. Journal of Virology 82, 461-470CrossRefGoogle ScholarPubMed
67Mee, C.J. et al. (2009) Polarization restricts hepatitis C virus entry into HepG2 hepatoma cells. Journal of Virology 83, 6211-6221CrossRefGoogle ScholarPubMed
68Reynolds, G.M. et al. (2008) Hepatitis C virus receptor expression in normal and diseased liver tissue. Hepatology 47, 418-427CrossRefGoogle ScholarPubMed
69Timpe, J.M. et al. (2008) Hepatitis C virus cell–cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology 47, 17-24CrossRefGoogle ScholarPubMed
70Witteveldt, J. et al. (2009) CD81 is dispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells. Journal of General Virology 90, 48-58CrossRefGoogle ScholarPubMed
71Brimacombe, C.L. et al. (2011) Neutralizing antibody-resistant hepatitis C virus cell-to-cell transmission. Journal of Virology 85, 596-605CrossRefGoogle ScholarPubMed
72Bartosch, B. et al. (2003) Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. Journal of Biological Chemistry 278, 41624-41630CrossRefGoogle ScholarPubMed
73Lavillette, D. et al. (2005) Characterization of host-range and cell entry properties of hepatitis C virus of major genotypes and subtypes. Hepatology 41, 265-274CrossRefGoogle ScholarPubMed
74Tscherne, D.M. et al. (2006) Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. Journal of Virology 80, 1734-1741CrossRefGoogle ScholarPubMed
75Kielian, M. and Rey, F.A. (2006) Virus membrane-fusion proteins: more than one way to make a hairpin. Nature Reviews. Microbiology 4, 67-76CrossRefGoogle ScholarPubMed
76Calvo, D. and Vega, M.A. (1993) Identification, primary structure, and distribution of CLA-1, a novel member of the CD36/LIMPII gene family. Journal of Biological Chemistry 268, 18929-18935CrossRefGoogle ScholarPubMed
77Webb, N.R. et al. (1998) SR-BII, an isoform of the scavenger receptor BI containing an alternate cytoplasmic tail, mediates lipid transfer between high density lipoprotein and cells. Journal of Biological Chemistry 273, 15241-15248CrossRefGoogle ScholarPubMed
78Krieger, M. (2001) Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems. Journal of Clinical Investigation 108, 793-797CrossRefGoogle Scholar
79Van Eck, M. et al. (2008) Scavenger receptor BI facilitates the metabolism of VLDL lipoproteins in vivo. Journal of Lipid Research 49, 136-146CrossRefGoogle Scholar
80Hoekstra, M. et al. (2009) Scavenger receptor class B type I-mediated uptake of serum cholesterol is essential for optimal adrenal glucocorticoid production. Journal of Lipid Research 50, 1039-1046CrossRefGoogle Scholar
81Cai, L. et al. (2008) SR-BI protects against endotoxemia in mice through its roles in glucocorticoid production and hepatic clearance. Journal of Clinical Investigation 118, 364-375CrossRefGoogle ScholarPubMed
82Vishnyakova, T.G. et al. (2003) Binding and internalization of lipopolysaccharide by Cla-1, a human orthologue of rodent scavenger receptor B1. Journal of Biological Chemistry 278, 22771-22780CrossRefGoogle ScholarPubMed
83Saddar, S., Mineo, C. and Shaul, P.W. (2010) Signaling by the high-affinity HDL receptor scavenger receptor B type I. Arteriosclerosis, Thrombosis and Vascular Biology 30, 144-150CrossRefGoogle ScholarPubMed
84Silver, D.L. et al. (2001) High density lipoprotein (HDL) particle uptake mediated by scavenger receptor class B type 1 results in selective sorting of HDL cholesterol from protein and polarized cholesterol secretion. Journal of Biological Chemistry 276, 25287-25293CrossRefGoogle Scholar
85de la Llera-Moya, M. et al. (1999) Scavenger receptor BI (SR-BI) mediates free cholesterol flux independently of HDL tethering to the cell surface. Journal of Lipid Research 40, 575-580CrossRefGoogle ScholarPubMed
86Kellner-Weibel, G. et al. (2000) Expression of scavenger receptor BI in COS-7 cells alters cholesterol content and distribution. Biochemistry 39, 221-229CrossRefGoogle ScholarPubMed
87Parathath, S. et al. (2004) Changes in plasma membrane properties and phosphatidylcholine subspecies of insect Sf9 cells due to expression of scavenger receptor class B, type I, and CD36. Journal of Biological Chemistry 279, 41310-41318CrossRefGoogle Scholar
88Zhang, Y. et al. (2007) Regulation of SR-BI-mediated selective lipid uptake in Chinese hamster ovary-derived cells by protein kinase signaling pathways. Journal of Lipid Research 48, 405-416CrossRefGoogle ScholarPubMed
89Barth, H. et al. (2005) Scavenger receptor class B type I and hepatitis C virus infection of primary tupaia hepatocytes. Journal of Virology 79, 5774-5785CrossRefGoogle Scholar
90Catanese, M.T. et al. (2007) High avidity monoclonal antibodies against human scavenger receptor class B type I efficiently block hepatitis C virus infection in the presence of HDL. Journal of Virology 81, 8063-8071CrossRefGoogle Scholar
91Dreux, M. et al. (2009) Receptor complementation and mutagenesis reveal SR-BI as an essential HCV entry factor and functionally imply its intra- and extra-cellular domains. PLoS Pathogens 5, e1000310CrossRefGoogle ScholarPubMed
92Grove, J. et al. (2007) Scavenger receptor BI and BII expression levels modulate hepatitis C virus infectivity. Journal of Virology 81, 3162-3169CrossRefGoogle ScholarPubMed
93Kapadia, S.B. et al. (2007) Initiation of HCV infection is dependent on cholesterol and cooperativity between CD81 and scavenger receptor B Type I. Journal of Virology 81, 374-383CrossRefGoogle ScholarPubMed
94Zeisel, M.B. et al. (2007) Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatology 46, 1722-1731CrossRefGoogle Scholar
95Gottwein, J.M. et al. (2009) Development and characterization of hepatitis C virus genotype 1–7 cell culture systems: role of CD81 and scavenger receptor class B type I and effect of antiviral drugs. Hepatology 49, 364-377CrossRefGoogle Scholar
96Catanese, M.T. et al. (2010) Role of scavenger receptor class B type I in hepatitis C virus entry: kinetics and molecular determinants. Journal of Virology 84, 34-43CrossRefGoogle Scholar
97Regeard, M. et al. (2008) Entry of pseudotyped hepatitis C virus into primary human hepatocytes depends on the scavenger class B type I receptor. Journal of Viral Hepatitis 15, 865-870CrossRefGoogle Scholar
98Dhillon, S. et al. (2010) Mutations within a conserved region of the hepatitis C virus E2 glycoprotein that influence virus-receptor interactions and sensitivity to neutralizing antibodies. Journal of Virology 84, 5494-5507CrossRefGoogle ScholarPubMed
99Randall, G. et al. (2007) Cellular cofactors affecting hepatitis C virus infection and replication. Proceedings of the National Academy of Sciences of the United States of America 104, 12884-12889CrossRefGoogle ScholarPubMed
100Chroni, A. et al. (2005) SR-BI mediates cholesterol efflux via its interactions with lipid-bound ApoE. Structural mutations in SR-BI diminish cholesterol efflux. Biochemistry 44, 13132-13143CrossRefGoogle ScholarPubMed
101Li, X. et al. (2002) Reconstituted discoidal ApoE-phospholipid particles are ligands for the scavenger receptor BI. The amino-terminal 1–165 domain of ApoE suffices for receptor binding. Journal of Biological Chemistry 277, 21149-21157CrossRefGoogle ScholarPubMed
102Thuahnai, S.T. et al. (2003) A quantitative analysis of apolipoprotein binding to SR-BI: multiple binding sites for lipid-free and lipid-associated apolipoproteins. Journal of Lipid Research 44, 1132-1142CrossRefGoogle ScholarPubMed
103Prentoe, J. et al. (2011) Hypervariable region 1 differentially impacts viability of hepatitis C genotype 1–6 strains and impairs virus neutralization. Journal of Virology 85, 2224-2234CrossRefGoogle Scholar
104Forns, X. et al. (2000) Hepatitis C virus lacking the hypervariable region 1 of the second envelope protein is infectious and causes acute resolving or persistent infection in chimpanzees. Proceedings of the National Academy of Sciences of the United States of America 97, 13318-13323CrossRefGoogle ScholarPubMed
105Voisset, C. et al. (2006) High-density lipoproteins reduce the neutralizing effect of hepatitis C virus (HCV)-infected patient antibodies by promoting HCV entry. Journal of General Virology 87, 2577-2581CrossRefGoogle ScholarPubMed
106Farci, P. et al. (1996) Prevention of hepatitis C virus infection in chimpanzees by hyperimmune serum against the hypervariable region 1 of the envelope 2 protein. Proceedings of the National Academy of Sciences of the United States of America 93, 15394-15399CrossRefGoogle ScholarPubMed
107Nieland, T.J. et al. (2002) Discovery of chemical inhibitors of the selective transfer of lipids mediated by the HDL receptor SR-BI. Proceedings of the National Academy of Sciences of the United States of America 99, 15422-15427CrossRefGoogle ScholarPubMed
108Krieger, S.E. et al. (2010) Inhibition of hepatitis C virus infection by anti-claudin-1 antibodies is mediated by neutralization of E2-CD81-claudin-1 associations. Hepatology 51, 1144-1157CrossRefGoogle ScholarPubMed
109Harris, H.J. et al. (2008) CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry. Journal of Virology 82, 5007-5020CrossRefGoogle ScholarPubMed
110Harder, C.J. et al. (2006) Hepatic SR-BI-mediated cholesteryl ester selective uptake occurs with unaltered efficiency in the absence of cellular energy. Journal of Lipid Research 47, 492-503CrossRefGoogle ScholarPubMed
111Wustner, D. et al. (2004) Different transport routes for high density lipoprotein and its associated free sterol in polarized hepatic cells. Journal of Lipid Research 45, 427-437CrossRefGoogle ScholarPubMed
112Eckhardt, E.R. et al. (2004) High density lipoprotein uptake by scavenger receptor SR-BII. Journal of Biological Chemistry 279, 14372-14381CrossRefGoogle ScholarPubMed
113Eckhardt, E.R. et al. (2006) High density lipoprotein endocytosis by scavenger receptor SR-BII is clathrin-dependent and requires a carboxyl-terminal dileucine motif. Journal of Biological Chemistry 281, 4348-4353CrossRefGoogle ScholarPubMed
114Schwarz, A.K. et al. (2009) Hepatoma cell density promotes claudin-1 and scavenger receptor BI expression and hepatitis C virus internalization. Journal of Virology 83, 12407-12414CrossRefGoogle ScholarPubMed
115Ikemoto, M. et al. (2000) Identification of a PDZ-domain-containing protein that interacts with the scavenger receptor class B type I. Proceedings of the National Academy of Sciences of the United States of America 97, 6538-6543CrossRefGoogle ScholarPubMed
116Komori, H. et al. (2008) Coexpression of CLA-1 and human PDZK1 in murine liver modulates HDL cholesterol metabolism. Arteriosclerosis, Thrombosis and Vascular Biology 28, 1298-1303CrossRefGoogle ScholarPubMed
117Eyre, N.S., Drummer, H.E. and Beard, M.R. (2010) The SR-BI partner PDZK1 facilitates hepatitis C virus entry. PLoS Pathogens 6, e101130.CrossRefGoogle ScholarPubMed
118Gu, X. et al. (1998) The efficient cellular uptake of high density lipoprotein lipids via scavenger receptor class B type I requires not only receptor-mediated surface binding but also receptor-specific lipid transfer mediated by its extracellular domain. Journal of Biological Chemistry 273, 26338-26348CrossRefGoogle Scholar
119Rhainds, D. et al. (2004) Localization and regulation of SR-BI in membrane rafts of HepG2 cells. Journal of Cell Science 117, 3095-3105CrossRefGoogle ScholarPubMed
120Babitt, J. et al. (1997) Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae. Journal of Biological Chemistry 272, 13242-13249CrossRefGoogle ScholarPubMed
121Subbaiah, P.V., Gesquiere, L.R. and Wang, K. (2005) Regulation of the selective uptake of cholesteryl esters from high density lipoproteins by sphingomyelin. Journal of Lipid Research 46, 2699-2705CrossRefGoogle ScholarPubMed
122Marsh, M. and Helenius, A. (2006) Virus entry: open sesame. Cell 124, 729-740CrossRefGoogle ScholarPubMed
123Haid, S., Pietschmann, T. and Pecheur, E.I. (2009) Low pH-dependent hepatitis C virus membrane fusion depends on E2 integrity, target lipid composition, and density of virus particles. Journal of Biological Chemistry 284, 17657-17667CrossRefGoogle ScholarPubMed
124Stiasny, K. and Heinz, F.X. (2004) Effect of membrane curvature-modifying lipids on membrane fusion by tick-borne encephalitis virus. Journal of Virology 78, 8536-8542CrossRefGoogle ScholarPubMed
125Umashankar, M. et al. (2008) Differential cholesterol binding by class II fusion proteins determines membrane fusion properties. Journal of Virology 82, 9245-9253CrossRefGoogle ScholarPubMed
126Rawat, S.S. et al. (2003) Modulation of entry of enveloped viruses by cholesterol and sphingolipids (Review). Molecular Membrane Biology 20, 243-254CrossRefGoogle ScholarPubMed
127Wustner, D. (2005) Mathematical analysis of hepatic high density lipoprotein transport based on quantitative imaging data. Journal of Biological Chemistry 280, 6766-6779CrossRefGoogle ScholarPubMed
128Charrin, S. et al. (2009) Lateral organization of membrane proteins: tetraspanins spin their web. Biochemical Journal 420, 133-154CrossRefGoogle ScholarPubMed
129Yalaoui, S. et al. (2008) Scavenger receptor BI boosts hepatocyte permissiveness to Plasmodium infection. Cell Host and Microbe 4, 283-292CrossRefGoogle ScholarPubMed
130Rodrigues, C.D. et al. (2008) Host scavenger receptor SR-BI plays a dual role in the establishment of malaria parasite liver infection. Cell Host and Microbe 4, 271-282CrossRefGoogle Scholar
131Reaven, E. et al. (2004) Dimerization of the scavenger receptor class B type I: formation, function, and localization in diverse cells and tissues. Journal of Lipid Research 45, 513-528CrossRefGoogle Scholar
132Cohn, J.S. et al. (2002) Plasma kinetics of VLDL and HDL apoC-I in normolipidemic and hypertriglyceridemic subjects. Journal of Lipid Research 43, 1680-1687CrossRefGoogle ScholarPubMed
133Malmendier, C.L. et al. (1986) Metabolism of apolipoprotein C-I in normolipoproteinemic human subjects. Atherosclerosis 62, 167-172CrossRefGoogle ScholarPubMed
134Gillotte, K.L. et al. (1999) Apolipoprotein-mediated plasma membrane microsolubilization. Role of lipid affinity and membrane penetration in the efflux of cellular cholesterol and phospholipid. Journal of Biological Chemistry 274, 2021-2028CrossRefGoogle Scholar
135Segrest, J.P. et al. (1992) The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. Journal of Lipid Research 33, 141-166CrossRefGoogle ScholarPubMed
136Munoz-Barroso, I. et al. (1999) Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus type 1 envelope glycoprotein-mediated membrane fusion. Journal of Virology 73, 6089-6092CrossRefGoogle ScholarPubMed
137Salzwedel, K., West, J.T. and Hunter, E. (1999) A conserved tryptophan-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity. Journal of Virology 73, 2469-2480CrossRefGoogle ScholarPubMed
138Schibli, D.J., Montelaro, R.C. and Vogel, H.J. (2001) The membrane-proximal tryptophan-rich region of the HIV glycoprotein, gp41, forms a well-defined helix in dodecylphosphocholine micelles. Biochemistry 40, 9570-9578CrossRefGoogle Scholar
139Saez-Cirion, A. et al. (2003) Structural and functional roles of HIV-1 gp41 pretransmembrane sequence segmentation. Biophysical Journal 85, 3769-3780CrossRefGoogle ScholarPubMed
140Shimizu, Y.K. et al. (1996) A hyperimmune serum against a synthetic peptide corresponding to the hypervariable region 1 of hepatitis C virus can prevent viral infection in cell cultures. Virology 223, 409-412CrossRefGoogle Scholar
141Penin, F. et al. (2001) Conservation of the conformation and positive charges of hepatitis C virus E2 envelope glycoprotein hypervariable region 1 points to a role in cell attachment. Journal of Virology 75, 5703-5710CrossRefGoogle ScholarPubMed
142Callens, N. et al. (2005) Basic residues in hypervariable region 1 of hepatitis C virus envelope glycoprotein e2 contribute to virus entry. Journal of Virology 79, 15331-15341CrossRefGoogle ScholarPubMed
143Tao, W. et al. (2009) A single point mutation in E2 enhances hepatitis C virus infectivity and alters lipoprotein association of viral particles. Virology 395, 67-76CrossRefGoogle ScholarPubMed
144von Hahn, T. et al. (2007) Hepatitis C virus continuously escapes from neutralizing antibody and T-cell responses during chronic infection in vivo. Gastroenterology 132, 667-678CrossRefGoogle ScholarPubMed
145Bartosch, B. et al. (2003) In vitro assay for neutralizing antibody to hepatitis C virus: evidence for broadly conserved neutralization epitopes. Proceedings of the National Academy of Sciences of the United States of America 100, 14199-14204Google Scholar
146Vieyres, G., Dubuisson, J. and Patel, A.H. (2010) Characterization of antibody-mediated neutralization directed against the hypervariable region 1 of hepatitis C virus E2 glycoprotein. Journal of General VirologyGoogle ScholarPubMed
147Farci, P. et al. (2000) The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies. Science 288, 339-344CrossRefGoogle ScholarPubMed
148Kato, N. et al. (1994) Genetic drift in hypervariable region 1 of the viral genome in persistent hepatitis C virus infection. Journal of Virology 68, 4776-4784CrossRefGoogle ScholarPubMed
149Liu, L. et al. (2010) Acceleration of hepatitis C virus envelope evolution in humans is consistent with progressive humoral immune selection during the transition from acute to chronic infection. Journal of Virology 84, 5067-5077CrossRefGoogle ScholarPubMed
150van Doorn, L.J. et al. (1995) Sequence evolution of the hypervariable region in the putative envelope region E2/NS1 of hepatitis C virus is correlated with specific humoral immune responses. Journal of Virology 69, 773-778CrossRefGoogle ScholarPubMed
151Booth, J.C. et al. (1998) Comparison of the rate of sequence variation in the hypervariable region of E2/NS1 region of hepatitis C virus in normal and hypogammaglobulinemic patients. Hepatology 27, 223-227CrossRefGoogle ScholarPubMed
152Ray, S.C. et al. (1999) Acute hepatitis C virus structural gene sequences as predictors of persistent viremia: hypervariable region 1 as a decoy. Journal of Virology 73, 2938-2946CrossRefGoogle ScholarPubMed
153Mondelli, M.U. et al. (2001) Hypervariable region 1 of hepatitis C virus: immunological decoy or biologically relevant domain? Antiviral Research 52, 153-159CrossRefGoogle ScholarPubMed
154Thomssen, R. et al. (1992) Association of hepatitis C virus in human sera with beta-lipoprotein. Medical Microbiology and Immunology (Berlin) 181, 293-300CrossRefGoogle Scholar
155Choo, S.-H. et al. (1995) Association of hepatitis C virus particles with immunoglobulin: a mechanism for persistent infection. Journal of General Virology 76, 2337-2341CrossRefGoogle ScholarPubMed
156Thomssen, R., Bonk, S. and Thiele, A. (1993) Density heterogeneities of hepatitis C virus in human sera due to the binding of beta-lipoproteins and immunoglobulins. Medical Microbiology and Immunology (Berlin) 182, 329-334CrossRefGoogle Scholar
157Lavillette, D. et al. (2005) Human serum facilitates hepatitis C virus infection, and neutralizing responses inversely correlate with viral replication kinetics at the acute phase of hepatitis C virus infection. Journal of Virology 79, 6023-6034CrossRefGoogle ScholarPubMed
158Dreux, M. and Cosset, F.-L. (2007) The scavenger receptor BI and its ligand, HDL: partners in crime against HCV neutralising antibodies. Journal of viral Hepatitis 14 (Suppl 1), 68-76CrossRefGoogle Scholar
159Roccasecca, R. et al. (2003) Binding of the hepatitis C virus E2 glycoprotein to CD81 is strain specific and is modulated by a complex interplay between hypervariable regions 1 and 2. Journal of Virology 77, 1856-1867CrossRefGoogle Scholar
160Wyatt, R. and Sodroski, J. (1998) The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280, 1884-1888CrossRefGoogle ScholarPubMed
161Masson, D. et al. (2009) Increased HDL cholesterol and apoA-I in humans and mice treated with a novel SR-BI inhibitor. Arteriosclerosis, Thrombosis and Vascular Biology 29, 2054-2060CrossRefGoogle ScholarPubMed
162Syder, A.J. et al. (2011) Small molecule scavenger receptor BI antagonists are potent HCV entry inhibitors. Journal of Hepatology 54, 48-55CrossRefGoogle ScholarPubMed
163vonHahn, T. et al. (2006) Oxidized low density lipoprotein inhibits hepatitis C virus cell entry. Hepatology 43, 932-942CrossRefGoogle Scholar
164Baranova, I.N. et al. (2005) Serum amyloid A binding to CLA-1 (CD36 and LIMPII analogous-1) mediates serum amyloid A protein-induced activation of ERK1/2 and p38 mitogen-activated protein kinases. Journal of Biological Chemistry 280, 8031-8040CrossRefGoogle ScholarPubMed
165Cai, L. et al. (2005) Serum amyloid A is a ligand for scavenger receptor class B type I and inhibits high density lipoprotein binding and selective lipid uptake. Journal of Biological Chemistry 280, 2954-2961CrossRefGoogle Scholar
166Uhlar, C.M. and Whitehead, A.S. (1999) Serum amyloid A, the major vertebrate acute-phase reactant. European Journal of Biochemistry 265, 501-523CrossRefGoogle ScholarPubMed
167Cai, Z. et al. (2007) Human serum amyloid A protein inhibits hepatitis C virus entry into cells. Journal of Virology 81, 6128-6133CrossRefGoogle ScholarPubMed
168Lavie, M. et al. (2006) Serum amyloid A has antiviral activity against hepatitis C virus by inhibiting virus entry in a cell culture system. Hepatology 44, 1626-1634CrossRefGoogle Scholar
169Puntoriero, G. et al. (1998) Towards a solution for hepatitis C virus hypervariability: mimotopes of the hypervariable region 1 can induce antibodies cross-reacting with a large number of viral variants. EMBO Journal 17, 3521-3533CrossRefGoogle ScholarPubMed
170Zucchelli, S. et al. (2001) Mimotopes of the hepatitis C virus hypervariable region 1, but not the natural sequences, induce cross-reactive antibody response by genetic immunization. Hepatology 33, 692-703CrossRefGoogle Scholar

Further reading, resources and contacts

Fafi-Kremer, S. et al. (2010) Viral entry and escape from antibody-mediated neutralization influence hepatitis C virus reinfection in liver transplantation. Journal of Experimental Medicine 207, 2019-2031CrossRefGoogle ScholarPubMed
Gastaminza, P. et al. (2010) Ultrastructural and biophysical characterization of hepatitis C virus particles produced in cell culture. Journal of Virology 84, 10999-11009CrossRefGoogle ScholarPubMed
Merz, A. et al. (2010) Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome. Journal of Biological Chemistry [Epub ahead of print; doi: 10.1074/jbc.M110.175018]Google ScholarPubMed
Popescu, C.I. and Dubuisson, J. (2009) Role of lipid metabolism in hepatitis C virus assembly and entry. Biology of the Cell 102, 63-74CrossRefGoogle ScholarPubMed