Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T17:43:57.828Z Has data issue: false hasContentIssue false

Acute Electrical Stimulation of Nucleus Ambiguus Enhances Immune Function in Rats

Published online by Cambridge University Press:  02 December 2014

Ying-Wu Mei
Affiliation:
College of Animal Science and Veterinary Medicine, JiLin University, Changchun, China
Zhan-Qing Yang
Affiliation:
College of Animal Science and Veterinary Medicine, JiLin University, Changchun, China
Wei Wang
Affiliation:
College of Animal Science and Veterinary Medicine, JiLin University, Changchun, China
De-Guang Song
Affiliation:
College of Animal Science and Veterinary Medicine, JiLin University, Changchun, China
Xu-Ming Deng
Affiliation:
College of Animal Science and Veterinary Medicine, JiLin University, Changchun, China
Ju-Xiong Liu*
Affiliation:
College of Animal Science and Veterinary Medicine, JiLin University, Changchun, China
*
College of Animal Science and Veterinary Medicine, JiLin University, 5333 Xi’an Road, Changchun, JiLin province, 130062, P.R.China.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Up to now, many “immunoactive” brain areas have been identified, such a hypothalamic nuclei, brain reward system; but the nucleus ambiguous (Amb), a nucleus nervi vagis of medulla oblongata, was less well studied in neuroimmunomodulation.

Methods:

In order to obtain more profound comprehension and more knowledge on Amb, we studied the effect of acute electrical stimulation of Amb on thymus and spleen activity in rat. A stimulator was applied to stimulate the Amb of the anaesthetic rats using the parameter at 100μAx5ms x100 Hz every 1s for 1 min. The levels of TGF-β and thymosin-β4 mRNA in thymus, the release of IL-2 and IL-6 at splenocyte in vitro and splenic lymphocyte proliferation were measured at hour 0.5,1,2,3 following the electrical stimulation.

Results:

The results showed that concanavalin A (Con A)-induced splenic lymphocyte proliferation and the release of IL-2 and IL-6 were all significantly enhanced at 0.5, 1, and 2 h following effective Amb stimulation as compared to in the control group. However, as compared to in the control group, the levels of TGF-β and thymosin-β4 mRNA in the thymus were both remarkably reduced at 0.5, 1, and 2 h following effective Amb stimulation.

Conclusions:

These findings reveal that the Amb participates in the modulation of animal immune functions.

Résumé:

RÉSUMÉ:Contexte:

Plusieurs zones immunoactives du cerveau ont ete identifiees jusqu’a maintenant, dont les noyaux hypothalamiques (corps de Luys, noyau sous–thalamique), le systeme de recompense du cerveau. Cependant, il existe peu d’etudes sur le role du noyau ambigu (Amb), le noyau du nerf vague situe dans le bulbe rachidien, dans la neuro–immunomodulation.

Méthodes:

Nous avons etudie l’effet de la stimulation electrique aigue de l’Amb sur l’activite du thymus et de la rate chez le rat afin de mieux connaitre et de comprendre le role de l’Amb. Un stimulateur a ete installe chez des rats anesthesies pour stimuler l’Amb. Le parametre utilise etait de 100µA x 5 ms x 100 Hz toutes les 1 s pendant 1 min. Les niveaux de TGF–β et d’ARNm de la thymosine β4 dans le thymus, la liberation d’IL–2 et d’IL–6 par des splenocytes in vitro et la proliferation lymphocytaire splenique ont ete mesures aux temps 0,5 h, 1 h, 2 h et 3 h apres la stimulation electrique.

Résultats:

La proliferation lymphocytaire splenique induite par la concanavaline A (Con A) et la liberation d’IL–2 et d’IL–6 etaient significativement augmentees aux temps 0,5 h, 1 h et 2 h apres une stimulation efficace de l’Amb par rapport au groupe temoin. Cependant, les niveaux de TGF–β et d’ARNm de la thymosine β dans le thymus etaient diminues de facon importante par rapport au groupe temoin aux temps 0,5 h, 1 h et 2 h

Conclusion:

Selon ces observation, l’Amb participe a la modulation des fonctions immunitaires chez l’animal.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2008

References

1. Dantzer, R. Innate immunity at the forefront of psychoneuroimmunology. Brain Behav Immun. 2004;18:16.CrossRefGoogle ScholarPubMed
2. Jiang, CL, Lu, CL, Liu, XY. The molecular basis for bidirectional communication between the immune and neuroendocrine systems. Domest Anim Endocrinol. 1998;15:3639.Google Scholar
3. Madden, KS, Felten, DL. Experimental basis for neural-immune interactions. Physiol Rev. 1995;75:77106.Google Scholar
4. Haddad, JJ, Saade, NE, Safieh-Garabedian, B. Cytokines and neuroimmune-endocrine interactions: a role for the hypothalamicpituitary- adrenal revolving axis. J Neuroimmunol. 2002;133:119.Google Scholar
5. Berczi, I, Nagy, E. Effect of hypophysectomy on immune function. In: Ader, R, Felten, D, Cohen, N, editors. Psychoneuroimmunology, vol. 2. New York: Academic Press; 1991: p. 33775.Google Scholar
6. Madden, KS. Catecholamines, sympathetic innervation, and immunity. Brain Behav Immun. 2003;17 Suppl 1:S510.Google Scholar
7. Hori, T, Katafuchi, T, Take, S, Shimizu, N, Niijima, A. The autonomic nervous system as a communication channel between the brain and the immune system. Neuroimmunomodulation. 1995;2:20315.Google Scholar
8. Wrona, D. Neural-immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J Neuroimmunol. 2006;172:3858.Google Scholar
9. Bulloch, K, Moore, RY. Innervation of the thymus gland by brain stem and spinal cord in mouse and rat. Am J Anat. 1981;162:15766.CrossRefGoogle ScholarPubMed
10. Paxinos, G, Watson, C. The rat brain in stereotaxic coordinates. 5th ed. San Diego (CA): Academic Press; 2005: p. 17383.Google Scholar
11. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:5563.CrossRefGoogle ScholarPubMed
12. Whelan, JA, Russell, NB, Whelan, MA. A method for the absolute quantification of cDNA using real-time PCR. J Immunol Methods. 2003;278:2619.Google Scholar
13. Richards, GP, Watson, MA, Kingsley, DH. A SYBR green, real-time RT-PCR method to detect and quantitate Norwalk virus in stools. J Virol Methods. 2004;116:6370.CrossRefGoogle ScholarPubMed
14. Baxevanis, CN, Reclos, GJ, Perez, S, Kokkinopoulos, D, Papamichail, M. Immunoregulatory effects of fraction 5 thymus peptides. I. Thymosin alpha 1 enhances while thymosin beta 4 suppresses the human autologous and allogeneic mixed lymphocyte reaction. Immunopharmacology. 1987;13:13341.Google Scholar
15. Low, TL, Hu, SK, Goldstein, AL. Complete amino acid sequence of bovine thymosin beta 4: a thymic hormone that induces terminal deoxynucleotidyl transferase activity in thymocyte populations. Proc Natl Acad Sci USA. 1981;78:11626.Google Scholar
16. Thurman, G, Low, T, Rossio, J, Goldstein, A. Specific and nonspecific macrophage migration inhibition. In: Goldstein, AL, Chiligos, MA, editors. Lymphokines and thymic hormones: Their potential utilization in cancer therapeutics. New York: NY; Raven. 1981: p. 145.Google Scholar
17. Sosne, G, Wheater, M, Qiu, P, Christopherson, P. Thymosin Beta 4 inhibits neutrophil production of cytokines after TNF-Alpha stimulation. Invest Ophthalmol Vis Sci. 2007;48:3649.Google Scholar
18. Nosaka KYaST, S. Vagal cardiac preganglionic neurons: distribution, cell types, and reflex discharges. Am J Physiol Regul Integr Comp Physiol. 1982;243:R928.Google Scholar
19. Ciriello, J, Calaresu, FR. Medullary origin of vagal preganglionic axons to the heart of the cat. J Auton Nerv Syst. 1982;5:922.Google Scholar
20. Spyer, MK. Neural organization and control of the baroreceptor reflex. Rev Physiol Biochem Pharmacol. 1981;88:23124.Google Scholar
21. Ciriello, J, Calaresu, FR. Distribution of vagal cardioinhibitory neurons in the medulla of the cat. Am J Physiol. 1980;238:R5764.Google Scholar
22. S Nosaka, TY, Yasunaga, K. Localization of vagal cardioinhibitory preganglionic neurons within rat brainstem. J Comp Neurol. 1979;186:7992.Google Scholar
23. Trotter, RN, Stornetta, RL, Guyenet, PG, Roberts, MR. Transneuronal mapping of the CNS network controlling sympathetic outflow to the rat thymus. Auton Neurosci. 2007;131:920.CrossRefGoogle Scholar
24. Niijima, A, Hori, T, Katafuchi, T, Ichijo, T. The effect of interleukin-1 beta on the efferent activity of the vagus nerve to the thymus. J Auton Nerv Syst. 1995;54:13744.Google Scholar
25. Nance, DM, Hopkins, DA, Bieger, D. Re-investigation of the innervation of the thymus gland in mice and rats. Brain Behav Immun. 1987;1:13447.CrossRefGoogle ScholarPubMed
26. Klein, RL, Wilson, SP, Dzielak, DJ, Yang, WH, Viveros, OH. Opioid peptides and noradrenaline co-exist in large dense-cored vesicles from sympathetic nerve. Neuroscience. 1982;7:225561.Google Scholar
27. Sakai, K, Yoshimoto, Y, Luppi, PH, Fort, P, el Mansari, M, Salvert, D, et al. Lower brainstem afferents to the cat posterior hypothalamus: a double-labeling study. Brain Res Bull. 1990;24:43755.Google Scholar
28. Volz, HP, Rehbein, G, Triepel, J, Knuepfer, MM, Stumpf, H, Stock, G. Afferent connections of the nucleus centralis amygdalae. A horseradish peroxidase study and literature survey. Anat Embryol (Berl). 1990;181:17794.Google Scholar
29. Wild, JM, Arends, JJ, Zeigler, HP. Projections of the parabrachial nucleus in the pigeon (Columba livia). J Comp Neurol. 1990;293:499523.Google Scholar
30. Ciriello, J, McMurray, JC, Babic, T, de Oliveira, CV. Collateral axonal projections from hypothalamic hypocretin neurons to cardiovascular sites in nucleus ambiguus and nucleus tractus solitarius. Brain Res. 2003;991:13341.Google Scholar
31. Belluardo, N, Mudo, G, Bindoni, M. Effects of early destruction of the mouse arcuate nucleus by monosodium glutamate on agedependent natural killer activity. Brain Res. 1990;534:22533.CrossRefGoogle ScholarPubMed
32. Hefco, V, Olariu, A, Hefco, A, Nabeshima, T. The modulator role of the hypothalamic paraventricular nucleus on immune responsiveness. Brain Behav Immun. 2004;18:15865.CrossRefGoogle ScholarPubMed
33. Hefco, VP, Olariu, A, Neacsu, I, Isaicul, A. The ways through which the hypothalamic paraventricular nucleus (PVH) and the medial hypothalamus affect the organism’s defence function. Rom J Physiol. 1993;30:8791.Google ScholarPubMed
34. Esquifino, AI, Arce, A, Alvarez, MP, Chacon, F, Brown-Borg, H, Bartke, A. Differential effects of light/dark recombinant human prolactin administration on the submaxillary lymph nodes and spleen activity of adult male mice. Neuroimmunomodulation. 2004;11:11926.CrossRefGoogle ScholarPubMed
35. Dorshkind, K, Horseman, ND. The roles of prolactin, growth hormone, insulin-like growth factor-I, and thyroid hormones in lymphocyte development and function: insights from genetic models of hormone and hormone receptor deficiency. Endocr Rev. 2000;21:292312.Google ScholarPubMed
36. Kelley, KW. Growth hormone, lymphocytes and macrophages. Biochem Pharmacol. 1989;38:70513.Google Scholar
37. Whelan, JA, Russell, NB, Whelan, MA. A method for the absolute quantification of cDNA using real-time PCR. J Immunol Methods. 2003;278:2619.Google Scholar
38. Richards, GP, Watson, MA, Kingsley, DH. A SYBR green, real-time RT-PCR method to detect and quantitate Norwalk virus in stools. J Virol Methods. 2004;116:6370.CrossRefGoogle ScholarPubMed