Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-26T23:45:47.072Z Has data issue: false hasContentIssue false

Characterization of Trypanosoma cruzi TcRjl locus and analysis of its transcript

Published online by Cambridge University Press:  23 August 2004

J. L. NEPOMUCENO-SILVA
Affiliation:
Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, 21949-900, Brazil
L. D. B. DE MELO
Affiliation:
Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, 21949-900, Brazil
S. M. MENDONÇA
Affiliation:
Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, 21949-900, Brazil
J. C. PAIXÃO
Affiliation:
Instituto Fernandes Figueira, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 22250-020, Brazil
U. G. LOPES
Affiliation:
Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, 21949-900, Brazil

Abstract

RJLs represent a recently described family of the Ras-related GTP-binding proteins. The Trypanosoma cruzi orthologue, TcRjl, was isolated and its locus was characterized in a region of almost 5 kb. Its 660 bp orf, predicting a protein of 24·13 kDa, is present as a single copy gene in T. cruzi I lineage, and from 1–2 copies in T. cruzi II lineage. TcRjl shares 73% aa sequence similarity with its closest identified orthologue, T. brucei TbRjl. RT–PCR experiments revealed that TcRjl is transcribed in mRNA in the 3 main life forms of the parasite, while Northern hybridization demonstrated that TcRjl is transcribed in T. cruzi epimastigotes as at least 2 transcripts, one of around 950 nt and the other of 1500 nt. Splice-leader addition was mapped to a single site at −69 bp upstream of TcRjl orf indicating that the two mRNA types may derive in differences at the 3′ of TcRjl mRNA. TcRjl locus presents considerable synteny with Rjl loci from Trypanosoma brucei and Leishmania major as available from their respective genome projects.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ANDERSSON, B., ASLUND, L., TAMMI, M., TRAN, A. N., HOHEISEL, J. D. & PETTERSSON, U. ( 1998). Complete sequence of a 93·4-kb contig from chromosome 3 of Trypanosoma cruzi containing a strand-switch region. Genome Research 8, 809816.CrossRefGoogle Scholar
BOURNE, H. R., SANDERS, D. A. & McCORMICK, F. ( 1991). The GTPase superfamily: conserved structure and molecular mechanism. Nature, London 349, 117127.CrossRefGoogle Scholar
BRINGAUD, F., VEDRENNE, C., CUVILLIER, A., PARZY, D., BALTZ, D., TETAUD, D., PAYS, E., VENEGAS, J., MERLIN, G. & BALTZ, T. ( 1998). Conserved organization of genes in trypanosomatids. Molecular and Biochemical Parasitology 94, 249264.CrossRefGoogle Scholar
CEVALLOS, A. M., LOPEZ-VILLASENOR, I., ESPINOSA, N., HERRERA, J. & HERNANDEZ, R. ( 2003). Trypanosoma cruzi: allelic comparisons of the actin genes and analysis of their transcripts. Experimental Parasitology 103, 2734.CrossRefGoogle Scholar
COELHO, E. R., URMENYI, T. P., FRANCO DA SILVEIRA, J., RONDINELLI, E. & SILVA, R. ( 2003). Identification of PDZ5, a candidate universal minicircle sequence binding protein of Trypanosoma cruzi. International Journal for Parasitology 33, 853858.CrossRefGoogle Scholar
CONTRERAS, V. T., ARAUJO-JORGE, T. C., BONALDO, M. C., THOMAZ, N., BARBOSA, H. S., MEIRELLES, M. N. & GOLDENBERG, S. ( 1988). Biological aspects of the Dm28c clone of Trypanosoma cruzi after metacyclogenesis in chemically defined media. Memórias do Instituto Oswaldo Cruz 83, 123133.CrossRefGoogle Scholar
DIAS, J. C., SILVEIRA, A. C. & SCHOFIELD, C. J. ( 2002). The impact of Chagas disease control in Latin America – a review. Memórias do Instituto Oswaldo Cruz 97, 603612.CrossRefGoogle Scholar
DUHAGON, M. A., DALLAGIOVANNA, B. & GARAT, B. ( 2001). Unusual features of poly[dT-dG].[dC-dA] stretches in CDS-flanking regions of Trypanosoma cruzi genome. Biochemical Biophysical Research Communications 287, 98103.Google Scholar
EL-SAYED, N. M., GHEDIN, E., SONG, J., MACLEOD, A., BRINGAUD, F., LARKIN, C., WANLESS, D., PETERSON, J., HOU, L., TAYLOR, S., TWEEDIE, A., BITEAU, N., KHALAK, H. G., LIN, X., MASON, T., HANNICK, L., CALER, E., BLANDIN, G., BARTHOLOMEU, D., SIMPSON, A. J., KAUL, S., ZHAO, H., PAI, G., VAN AKEN, S., UTTERBACK, T., HAAS, B., KOO, H. L., UMAYAM, L., SUH, B., GERRARD, C., LEECH, V., QI, R., ZHOU, S., SCHWARTZ, D., FELDBLYUM, T., SALZBERG, S., TAIT, A., TURNER, C. M., ULLU, E., WHITE, O., MELVILLE, S., ADAMS, M. D., FRASER, C. M. & DONELSON, J. E. ( 2003). The sequence and analysis of Trypanosoma brucei chromosome II. Nucleic Acids Research 31, 48564863.CrossRefGoogle Scholar
FIELD, M. C., ALI, B. R. & FIELD, H. ( 1999). GTPases in protozoan parasites: tools for cell biology and chemotherapy. Parasitology Today 15, 365371.CrossRefGoogle Scholar
HALL, N., BERRIMAN, M., LENNARD, N. J., HARRIS, B. R., HERTZ-FOWLER, C., BART-DELABESSE, E. N., GERRARD, C. S., ATKIN, R. J., BARRON, A. J., BOWMAN, S., BRAY-ALLEN, S. P., BRINGAUD, F., CLARK, L. N., CORTON, C. H., CRONIN, A., DAVIES, R., DOGGETT, J., FRASER, A., GRUTER, E., HALL, S., HARPER, A. D., KAY, M. P., LEECH, V., MAYES, R., PRICE, C., QUAIL, M. A., RABBINOWITSCH, E., REITTER, C., RUTHERFORD, K., SASSE, J., SHARP, S., SHOWNKEEN, R., MACLEOD, A., TAYLOR, S., TWEEDIE, A., TURNER, C. M., TAIT, A., GULL, K., BARRELL, B. & MELVILLE, S. E. ( 2003). The DNA sequence of chromosome I of an African trypanosome: gene content, chromosome organization, recombination and polymorphism. Nucleic Acids Research 31, 48644873.CrossRefGoogle Scholar
MACHADO, C. A. & AYALA, F. J. ( 2001). Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of Trypanosoma cruzi. Proceedings of the National Academy of Sciences, USA 98, 73967401.CrossRefGoogle Scholar
MYLER, P. J., AUDLEMAN, L., DEVOS, T., HIXSON, G., KISER, P., LEMLEY, C., MAGNESS, C., RICKEL, E., SISK, E., SUNKIN, S., SWARTZELL, S., WESTLAKE, T., BASTIEN, P., FU, G., IVENS, A. & STUART, K. ( 1999). Leishmania major Friedlin chromosome 1 has an unusual distribution of protein-coding genes. Proceedings of the National Academy of Sciences, USA 96, 29022906.CrossRefGoogle Scholar
MYLER, P. J. & STUART, K. D. ( 2000). Recent developments from the Leishmania genome project. Current Opinion in Microbiology 3, 412416.CrossRefGoogle Scholar
NEPOMUCENO-SILVA, J. L., DE MELO, L. D. B., MENDONÇA, S. M., PAIXÃO, J. C. & LOPES, U. G. ( 2004). RJLs: A new family of Ras-related GTP binding proteins. Gene 327, 221232.CrossRefGoogle Scholar
RECOMMENDATIONS FROM A SATELLITE MEETING ( 1999). Memórias do Instituto Oswaldo Cruz 94 (Suppl. 1), 429432.
SAMBROOK, J., FRITSCH, E. F. & MANIATIS, T. ( 1989). Molecular Cloning: a Laboratory Manual, 2nd Edn. Cold Spring Harbor Press, Cold Spring Harbor, New York.
TAKAI, Y., SASAKI, T. & MATOZAKI, T. ( 2001). Small GTP-binding proteins. Physiological Reviews 81, 153208.CrossRefGoogle Scholar
WORTHEY, E. A., MARTINEZ-CALVILLO, S., SCHNAUFER, A., AGGARWAL, G., CAWTHRA, J., FAZELINIA, G., FONG, C., FU, G., HASSEBROCK, M., HIXSON, G., IVENS, A. C., KISER, P., MARSOLINI, F., RICKELL, E., SALAVATI, R., SISK, E., SUNKIN, S. M., STUART, K. D. & MYLER, P. J. ( 2003). Leishmania major chromosome 3 contains two long convergent polycistronic gene clusters separated by a tRNA gene. Nucleic Acids Research 31, 42014210.CrossRefGoogle Scholar