Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-12T18:28:40.839Z Has data issue: false hasContentIssue false

Phylogenetic position of the Neotropical Family Zonocotylidae (Paramphistomoidea) using partial 28S rDNA sequences

Published online by Cambridge University Press:  06 December 2023

M.M. Montes*
Affiliation:
Centro de Estudios Parasitológicos y Vectores (CEPAVE), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata (CCT, CONICET-UNLP-CICPBA), La Plata, Buenos Aires, Argentina
F.K. Arrascaeta
Affiliation:
Centro de Estudios Parasitológicos y Vectores (CEPAVE), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata (CCT, CONICET-UNLP-CICPBA), La Plata, Buenos Aires, Argentina
J.A. Barneche
Affiliation:
Centro de Estudios Parasitológicos y Vectores (CEPAVE), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata (CCT, CONICET-UNLP-CICPBA), La Plata, Buenos Aires, Argentina
D. Balcazar
Affiliation:
Centro de Estudios Parasitológicos y Vectores (CEPAVE), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata (CCT, CONICET-UNLP-CICPBA), La Plata, Buenos Aires, Argentina
G.F. Reig Cardarella
Affiliation:
Escuela de Tecnología Médica y Centro Integrativo de Biología y Química Aplicada (CIBQA). Universidad Bernardo O’ Higgins, Santiago de Chile, Chile.
S.R. Martorelli
Affiliation:
Centro de Estudios Parasitológicos y Vectores (CEPAVE), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata (CCT, CONICET-UNLP-CICPBA), La Plata, Buenos Aires, Argentina
*
Corresponding author: M.M. Montes; Email: martinmiguelmontes@gmail.com

Abstract

Six families belonging to the Paramphistomoidea superfamily have been reported in South America, with only Zonocotylidae and Balanorchiidae being endemic. The Zonocotylidae was initially classified as Aspidogastrea and then as a paramphistomoid. This family comprises a single genus, Zononocotyle, with two species. It is primarily characterized by having an attachment organ with transverse ridges and a single testis. The placement of Zonocotylidae within Paramphistomoidea is controversial, as some researchers speculate that this genus is the most primitive member of the superfamily, while others consider it an aberrant form. The main objectives of our study were to provide the first sequences of Zonocotylidae and elucidate its phylogenetic position. We amplified the 28S gene from two parasites from Cyphocharax sp. from Punta Lara, Buenos Aires. Newly generated sequences were used to infer the phylogenetic relationships with other Paramphistomoidea species using a Bayesian approach. Zonocotylidae were clustered with Dadayiinae and Kalitrematinae (Cladorchiidae) species found in freshwater fishes from South America. Genetic analyses revealed that they formed a well-supported clade with cladorchiids in freshwater hosts from South America. However, the occurrence of genera of Cladorchiidae in North America, Middle America, Asia, and Australia suggested its polyphyletic nature and may indicate the need for the erection of new families. Other Paramphistomoidea families may also require further revision. The addition of new sequences to phylogenetic analyses along with a comprehensive and more detailed description of the genera will help resolve the relationships within this group.

Type
Research Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, PV, Assis, JCA, López-Hernández, D, Pulido-Murillo, EA, Melo, AL, Locke, SA, and Pinto, HA (2020) A phylogenetic study of the cecal amphistome Zygocotyle lunata (Trematoda: Zygocotylidae), with notes on the molecular systematics of Paramphistomoidea. Parasitology Research 119, 25112520.CrossRefGoogle ScholarPubMed
Benovics, M, Mikulíček, P, Žákovicová, Z, Papežík, P, and Pantoja, C (2022) Hidden in plain sight: novel molecular data reveal unexpected genetic diversity among paramphistome parasites (Digenea: Paramphistomoidea) of European water frogs. Parasitology 149, 14251438.CrossRefGoogle ScholarPubMed
Chai, JY (2019) Human intestinal flukes: from discovery to treatment and control. Netherlands, Springer.CrossRefGoogle Scholar
Chai, JY and Jung, BK (2019) Epidemiology of trematode infections: an update. pp. 359409 in Toledo, R and Fried, B (Eds.), Digenetic trematodes (Advances in experimental medicine and biology). vol. 1154. Cham, Switzerland, Springer.CrossRefGoogle Scholar
Choudhury, A, Aguirre-Macedo, ML, Curran, SS, Ostrowski de Núñez, M, Overstreet, RM, Pérez-Ponce de León, G, and Santos, CP (2016) Trematode diversity in freshwater fishes of the Globe II: ‘New World’. Systematic Parasitology 93, 271282.CrossRefGoogle ScholarPubMed
Fernandes, BMM, Justo, MCN, Cárdenas, MQ, and Cohen, SC (2015) South American trematodes parasites of birds and mammals. Fiocruz–RJ, Rio de Janeiro, Biblioteca de Ciências Biomédicas, ICICT.Google Scholar
Fernandes, BMM and Kohn, A (2014) South American trematodes parasites of amphibians and reptiles. Rio de Janeiro, Oficina de Livros,Google Scholar
Jones, A (2005) Superfamily Paramphistomoidea Fischoeder, 1901. pp. 221227 in Jones, A, Bray, RA, and Gibson, DI (Eds.), Keys to the trematoda. vol. 2. Wallingford, CAB International and The Natural History Museum.CrossRefGoogle Scholar
Katoh, K, Rozewicki, J, and Yamada, K (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20, 11601166.CrossRefGoogle ScholarPubMed
Kearse, M, Moir, R, Wilson, A, Stones-Havas, S, Cheung, M, Sturrock, S, Buxton, S, Cooper, A, Markowitz, S, Duran, C, Thierer, T, Ashton, B, Meintjes, P, and Drummond, A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 16471649.CrossRefGoogle ScholarPubMed
Kohn, A, Fernandes, BMM, and Cohen, SC (2007) South American trematodes parasites of fishes. Rio de Janeiro, Imprinta Express.Google Scholar
Kumar, S, Stecher, G, Li, M, Knyaz, C, and Tamura, K (2018) Mega X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35, 15471549.CrossRefGoogle ScholarPubMed
Littlewood, DTJ, Curini-Galletti, M, and Herniou, EA (2000) The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Molecular Phylogenetics and Evolution 16, 449466.CrossRefGoogle ScholarPubMed
Lunaschi, LI (1988) Helmintos parásitos de peces de la Argentina. VII- Zonocotyle bicaecata Travassos, 1948 (Trematoda, Zonocotylidae). Neotropica 34, 8388.Google Scholar
Padilha, T (1978) Caracterizaçao de Zonocotyle bicaecata Travassos, 1948 e descriçao de um novo genero (Trematoda, Digenea). Rev Brazilian Journal of Biology 38, 415429.Google Scholar
Pantoja, C, Scholz, T, Luque, JL, and Jones, A (2018) New genera and species of paramphistomes (Digenea: Paramphistomoidea: Cladorchiidae) parasitic in fishes from the Amazon basin in Peru. Systematic Parasitology 95, 611624.CrossRefGoogle ScholarPubMed
Pantoja, C, Scholz, T, Luque, JL, and Jones, A (2019) First molecular assessment of the interrelationships of cladorchiid digeneans (Digenea: Paramphistomoidea), parasites of Neotropical fishes, including descriptions of three new species and new host and geographical records. Folia Parasitology 66, 11.Google ScholarPubMed
Posada, D and Buckley, TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53, 793808.CrossRefGoogle ScholarPubMed
Ronquist, F, Teslenkovan, M, van der Mark, P, Ayres, DL, Darling, A, Hohna, S, Larget, B, Liu, L, Suchard, MA, and Huelsenbeck, JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across large model space. Systematic Biology 61, 539542.CrossRefGoogle ScholarPubMed
Sey, O (1991) CRC handbook of the zoology of amphistomes. 1st edn. Boca Raton, CRC Press.Google Scholar
Talavera, G and Castresana, J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564577.CrossRefGoogle ScholarPubMed
Tandon, V, Roy, B, Shylla, JA, and Ghatani, S (2019) Amphistomes pp. 255277 in Toledo, R and Fried, B (Eds.), Digenetic trematodes (Advances in experimental medicine and biology). vol. 1154. Cham, Switzerland, Springer.CrossRefGoogle Scholar
Tkach, VV, Littlewood, DTJ, Olson, PD, Kinsella, JM, and Swidersk, Z (2003) Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). Systematic Parasitology 56, 115.CrossRefGoogle ScholarPubMed
Vélez, J, Hirzmann, J, Lange, MK, Chaparro-Gutiérrez, JJ, Taubert, A, and Hermosilla, C (2018) Occurrence of endoparasites in wild Antillean manatees (Trichechus manatus manatus) in Colombia. International Journal for Parasitology: Parasites and Wildlife 7, 5457.Google ScholarPubMed
Venzal, JM, Castro, O, Sosa, N, Félix, ML, Leites, V, Menoni, F, and Vigil, JD (2016) Digeneos parásitos de Cyphocharax platanus (Günther, 1880) (Characiformes: Curimatidae) en el tramo inferior del río Uruguay en la zona de influencia de la represa de Salto Grande, Uruguay. FAVE, Secc. Cs. Vet. 15, 2530.CrossRefGoogle Scholar
Supplementary material: File

Montes et al. supplementary material
Download undefined(File)
File 77.3 KB