Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-09T16:17:56.688Z Has data issue: false hasContentIssue false

Assessment of different selective agar media for enumeration and isolation of Listeria from dairy products

Published online by Cambridge University Press:  01 June 2009

Lucas Dominguez
Affiliation:
Departamento de Patología Animal I (Sanidad Animal), Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
José Francisco Fernández
Affiliation:
Departamento de Patología Animal I (Sanidad Animal), Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
Victor Briones
Affiliation:
Departamento de Patología Animal I (Sanidad Animal), Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
José Luis Blanco
Affiliation:
Departamento de Patología Animal I (Sanidad Animal), Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
Guillermo Suárez
Affiliation:
Departamento de Patología Animal I (Sanidad Animal), Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain

Summary

Different selective agar media were compared for the recovery and isolation of five species of Listeria from raw milk and cheese. The selective media examined were Beerens medium, MacBride medium and that described by Dominguez et al. (1984) with 6 mg/1 acriflavine, listeria selective agar medium (LSAM), and LSAM with 12 mg/1 acriflavine (LSAM × 2A); a non-selective yeast glucose Lemco agar was included for comparison. When the difference between listeria and the natural microflora of raw milk and cheese was 102 cfu/ml, listeria could be isolated by direct plating on all media tested. When it was lower than 103–104 cfu/ml, listeria were isolated by direct plating only on LSAM and LSAM × 2A. When the difference was greater than 104 cfu/ml, a previous enrichment was necessary to isolate them. LSAM and LSAM × 2A media performed better than the other media tested for isolating listeria by direct plating and improved their isolation from dairy products. This superior performance was evaluated by the ability of these media to support colony formation of different species of Listeria tested, the easy recognition of these colonies from those formed by other microorganisms and by their capacity to inhibit the natural microflora of these foods.

Type
Original articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beerens, H. & Tahon-Castel, M. M. 1966 [Nalidixic acid medium for the isolation of streptococci, D. pneummiae, Listeria and Erysipelothrix]. Annales de l'Institut Pasteur, Paris 111 9093Google ScholarPubMed
Dominguez, L., Fernandez, J. F., Vazquez, J. A., Rodriguez, E. & Suarez, G. 1985 [Isolation of microorganisms of the genus Listeria from raw milk intended for human consumption.] Canadian Journal of Microbiology 31 938941Google Scholar
Dominguez, L., Fernandez, J. F., Rodriguez, E. L., Vazquez, J. A., Gomez-Lucia, E. & Suarez, G. 1987 Some studies of the ability of Listeria monocytogenes to survive heat treatment. Supplement to IDF Circular 87/3Google Scholar
Dominguez, L., Suarez, G., Fernandez, J. F. & Rodriguez, E. 1984 New methodology for the isolation of Listeria microorganisms from heavily contaminated environments. Applied and Environmental Microbiology 47 11881190CrossRefGoogle Scholar
Donnelly, C. W. & Baigent, G. J. 1986 Method for flow cytometric detection of Listeria Monocytogenes in milk. Applied and Environmental Microbiology 52 689695CrossRefGoogle ScholarPubMed
Doyle, M. P. & Schoeni, J. L. 1986 Selective-enrichment procedure for isolation of Listeria monocytogenes from fecal and biologic specimens. Applied and Environmental Microbiology 51 11271129CrossRefGoogle ScholarPubMed
Doyle, M. P. & Schoeni, J. L. 1987 Comparison of procedures for isolating Listeria monocytogenes in soft, surface-ripened cheese. Journal of Food Protection 50 46CrossRefGoogle ScholarPubMed
Farber, J. M. & Speirs, J. I. 1987 Monoclonal antibodies directed against the flagellar antigens of Listeria species and their potential in EIA-based methods. Journal of Food Protection 50 479484CrossRefGoogle ScholarPubMed
Fernandez, J. F., Dominguez, L., Vazquez, J. A., Blanco, J. L. & Suarez, G. 1986 [Listeria monocytogenes in pasteurized milk]. Canadian Journal of Microbiology 32 149150Google Scholar
Fernandez, J. F., Dominguez, L., Vazquez, J. A., Rodriguez, E., Briones, V., Blanco, J. L. & Suarez, G. 1987 Survival of Listeria monocytogenes in raw milk treated in a pilot plant size pasteurizer. Journal of Applied Bacteriology 63 533537Google Scholar
Finegold, S. M. & Baron, E. J. 1986 Bailey and Scott's diagnostic microbiology, 7th edn, p. 483. St. Louis, MO: CV Mosby Co.Google Scholar
Fleming, D. W., Cochi, S. L., MacDonald, K. L., Brondum, J., Hayes, P. S., Plikaytis, B. D., Holmes, M. B., Audurier, A., Broomer, C. V. & Reingold, A. L. 1985 Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. New England Journal of Medicine 312 404407CrossRefGoogle Scholar
Hao, D. Y. Y., Beuchat, L. R., & Brackett, R. E. 1987 Comparison of media and methods for detecting and enumerating Listeria monocytogenes in refrigerated cabbage. Applied and Environmental Microbiology 53 955957CrossRefGoogle ScholarPubMed
Hayes, P. S., Feeley, J. C., Graves, L. M., Ajello, G. W. & Fleming, D. W. 1986 Isolation of Listeria monocytogenes from raw milk. Applied and Environmental Microbiology 51 438440CrossRefGoogle ScholarPubMed
James, S. M., Fannin, S. L., Agree, B. A., Hall, B., Parker, E., Vogt, J., Run, G., Williams, J., Lieb, L., Salminen, C., Prendergast, T., Werter, S. B. & Chin, J. 1985 Listeriosis outbreak associated with Mexican-style cheese-California. Morbidity and Mortality Weekly Report 34 357359Google Scholar
Lee, W. H. & McClain, D. 1986 Improved Listeria monocytogenes selective agar. Applied and Environmental Microbiology 52 12151217CrossRefGoogle ScholarPubMed
Lovett, J., Francis, D. W., Hunt, J. M. & Crawford, R. G. 1985 A survey for the incidence of Listeria monocytogenes in raw milk. Dairy and Food Sanitation 5 399Google Scholar
McBride, M. E. & Girard, K. F. 1960 A selective method for the isolation of Listeria monocytogenes from mixed bacterial populations. Journal of Laboratory and Clinical Medicine 55 153157Google Scholar
Naylor, J. & Sharpe, M. E. 1958 Lactobacilli in Cheddar cheese. I. The use of selective media for isolation and of serological typing for identification. Journal of Dairy Research 25 92103CrossRefGoogle Scholar
Ralovich, B., Forray, A., Mérö, E., Málovics, H. & Százados, I. 1971 New selective medium for isolation of L. monocytogenes. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abteil I Originale 216 8891Google ScholarPubMed
Rocourt, J. & Catimel, B. 1985 [Biochemical characterization of Listeria species]. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene. A 260 221231Google Scholar
Rocourt, J., Schrettenbrünner, A. & Seeliger, H. P. R. 1983 [Biochemical differenciation of genomes of Listeria monocytogenessensu lato.] Annales de l'Institut Pasteur: Microbiologie 134A 6571CrossRefGoogle ScholarPubMed
Slade, P. J. & Collins-Thompson, D. L. 1987 Two-stage enrichment procedures for isolating Listeria monocytogenes from raw milk. Journal of Food Protection 50 904908CrossRefGoogle ScholarPubMed