Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-09T09:03:49.143Z Has data issue: false hasContentIssue false

Field-evolved resistance to λ-cyhalothrin in the lady beetle Eriopis connexa

Published online by Cambridge University Press:  18 September 2017

P.M.G. Costa
Affiliation:
Departamento de Agronomia – Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos 52171-900, Recife – PE, Brazil
J.B. Torres*
Affiliation:
Departamento de Agronomia – Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos 52171-900, Recife – PE, Brazil
V.M. Rondelli
Affiliation:
Departamento de Agronomia, Universidade Federal de Rondônia (UNIR), 76940-000 Rolim de Moura, RO, Brazil
R. Lira
Affiliation:
Departamento de Agronomia – Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos 52171-900, Recife – PE, Brazil
*
*Author for correspondence Tel. +55 81 3320 6218 Fax: +55 81 3320 6205 E-mail: jorge.torres@ufrpe.br

Abstract

Natural enemies are exposed to insecticide sprays for herbivorous species and may evolve field resistance to insecticides. Natural enemies selected for resistance in the field, however, are welcome for pest control. The susceptibility of 20 populations of Eriopis connexa from various crop ecosystems to λ-cyhalothrin was tested. Three bioassays were conducted: (i) topical treatment with lethal dose (LD)50 previously determined for populations considered standard for susceptibility (LD50S) and for resistance (LD50R) to λ-cyhalothrin at technical grade; (ii) dose–mortality assay to calculate the LD for populations exhibiting significant survival to the LD50R; and (iii) determination of survival when exposed to dried residues at field rates. Among the 20 tested populations, seven populations did not survive or survival rates were lower than 10% when treated with LD50R; three populations survived >20%, but lower than 50%; while ten populations exhibited equal or greater survival rates compared with the 50% expected survival for the LD50R. Thus, these ten populations were subjected to dose–mortality response, and the LD50 values varied from 0.046 to 5.44 µg a.i./insect with resistance ratio of 8.52- to 884.08-folds. Adults from these ten populations that were ranked as resistant according to the LD50R exhibited survival from 44.5 to 100% exposed to the lowest and from 38.8 to 100% exposed to the highest field rates of λ-cyhalothrin, respectively. Otherwise, the remaining ten populations ranked as susceptible according to the LD50R showed survival from 3.3 to 56% exposed to the lowest and from 0 to 17.7% exposed to the highest field rates of λ-cyhalothrin, respectively. Therefore, 50% of the tested E. connexa populations exhibited field-evolved resistance to λ-cyhalothrin and the use of a discriminatory LD50 for resistance matched the survival obtained when exposed to the insecticide field rates.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, N., Mansoor, M.M., Shad, S.A., Pathan, A.K., Waheed, A., Ejaz, M., Razaq, M. & Zulfiqar, M.A. (2014) Fitness cost and realized heritability of resistance to spinosad in Chrysoperla carnea (Neuroptera: Chrysopidae). Bulletin of Entomological Research 104, 707715.Google Scholar
Agrofit (2016) AGROFIT – Sistema de agrotóxicos fitossanitários. http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_consGoogle Scholar
Barbosa, P.R.R., Michaud, J.P., Rodrigues, A.R.S. & Torres, J.B. (2016) Dual resistance to lambda-cyhalothrin and dicrotophos in Hippodamia convergens (Coleoptera: Coccinellidae). Chemosphere 159, 19.CrossRefGoogle ScholarPubMed
Barros, E.M. (2015) Suscetibilidade do Anthonomus Grandis Boh. (Coleoptera: Curculionidae) e sobrevivência de inimigos naturais de pragas do algodoeiro a inseticidas. Recife, PE, Universidade Federal Rural de Pernambuco.Google Scholar
Bass, C., Puinean, A.M., Zimmer, C.T., Denholm, I., Field, L.M., Foster, S.P., Gutbrod, O., Nauen, R., Slater, R. & Williamson, M.S. (2014) The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochemistry and Molecular Biology 51, 4151.CrossRefGoogle ScholarPubMed
Boller, E.F., Vogt, H., Ternes, P. & Malavolta, C. (2005) Working document on selectivity of pesticides. www.IOBC.Ch/2005/Working%20Document% 20Pesticides_Explanations.pdf.Google Scholar
Croft, B.A. (1990) Arthropod Biological Control Agents and Pesticides. New York, NY, John Wiley & Sons.Google Scholar
Di Stefano, J. (2005) Effect size estimates and confidence intervals: an alternative focus for the presentation and interpretation of ecological data. Trends in Ecology & Evolution 1, 71102.Google Scholar
Evans, E.W. & Richards, D.R. (1997) Managing the dispersal of ladybird beetles (Col.: Coccinellidae): use of artificial honeydew to manipulate spatial distributions. Entomophaga 42, 93102.Google Scholar
Evans, E.W. & Toler, T.R. (2007) Aggregation of polyphagous predators in response to multiple prey: ladybirds (Coleoptera: Coccinellidae) foraging in alfalfa. Population Ecology 49, 2936.Google Scholar
Finney, D.J. (1971) Probit Analysis. 3rd edn. London, Cambridge University Press.Google Scholar
Genung, M.A., Crutsinger, G.M., Bailey, J.K., Schweitzer, J.A. & Sanders, N.J. (2012) Aphid and ladybird beetle abundance depend on the interaction of spatial effects and genotypic diversity. Oecologia 168, 167174.Google Scholar
Georghiou, G.P. (1972) The evolution of resistance to pesticides. Annual Review of Ecology, Evolution and Systematics 3, 133168.Google Scholar
Graves, J.B., Mohamad, R.B. & Clower, D.F. (1978) Beneficial insects also developing ‘resistance’. LA Agriculture 22, 1011.Google Scholar
Hassan, S.A. (1992) Guidelines for testing the effects of pesticides on beneficial organisms: description of test methods. IOBC/WPRS Bulletin 15, 186p.Google Scholar
Hassan, S.A., Bigler, F., Blaisinger, P., Bogenschütz, H., Brun, J., Chiverton, P., Dickler, E., Easterbrook, M.A., Edwards, P.J., Englert, W.D., Firth, S.I., Huang, P., Inglesfield, D., Klingauf, F., Kühner, C., Ledieu, M.S., Naton, E., Oomen, P.A., Overmeer, W.P.J., Plevoets, P., Reboulet, J.N., Rieckmann, W., Samsoe-Petersen, L., Shires, S.W., Stäubli, A., Stevenson, J., Tuset, J.J., Vanwetswinkel, G. & Van Zon, A.Q. (1985) Standard methods to test the side-effects of pesticides on natural enemies of insects and mites developed by the IOBC/WPRS working group ‘pesticides and beneficial organisms’. EPPO Bulletin 15, 214255.CrossRefGoogle Scholar
Head, R., Neel, W.W., Sartor, C.R. & Chambers, H. (1977) Methyl parathion and carbaryl resistance in Chrysomela scripta and Coleomegilla maculata. Bulletin of Environmental Contamination and Toxicology 17, 163164.Google Scholar
Hoy, M.A. (1990) Pesticide resistance in arthropod natural enemies: variability and selection. pp. 203236 in Roush, R.T. & Tabashnik, B.E. (Eds) Pesticide Resistance in Arthropods. New York, Chapman & Hall.Google Scholar
Huseth, A.S., Petersen, J.D., Poveda, K., Szendrei, Z., Nault, B.A., Kennedy, G.G. & Groves, L.R. (2015) Spatial and temporal potato intensification drives insecticide resistance in the specialist herbivore, Leptinotarsa decemlineata. Public Library of Science ONE 10, e0127576.Google Scholar
Johnson, M.W. & Tabashnik, B.E. (1999) Enhanced biological control through pesticide selectivity. pp. 297317 in Bellows, T.S. & Fisher, T.W. (Eds) Handbook of Biological Control. San Diego, Academic Press.Google Scholar
Kumral, N.A., Gencer, N.S., Susurluk, H. & Yalcin, C. (2011) A comparative evaluation of the susceptibility to insecticides and detoxifying enzyme activities in Stethorus gilvifrons (Coleoptera: Coccinellidae) and Panonychus ulmi (Acarina: Tetranychidae). International Journal of Acarology 37, 255268.Google Scholar
Lira, R., Rodrigues, A.R.S. & Torres, J.B. (2016) Fitness advantage in heterozygous ladybird beetle Eriopis connexa (Germar) resistant to lambda-cyhalothrin. Neotropical Entomology 45, 573579.Google Scholar
Liu, E.M. & Huang, J. (2013) Risk preferences and pesticide use by cotton farmers in China. Journal of Development Economics 103, 202215.Google Scholar
Lovell, J.B., Wright, D.P., Gard, I.E., Miller, T.P., Treacy, M.F., Addor, R.W. & Kamhi, V.M. (1990) An insecticide/acaracide from a novel class of chemistry. Brighton Crop Protection Conference Pests and Diseases 3, 3742.Google Scholar
Martin, E.A., Reineking, B., Seo, B. & Steffan-Dewenter, I. (2013) Natural enemy interactions constrain pest control in complex agricultural landscapes. Proceedings of the National Academy of Sciences of the United States of America 110, 55345539.Google Scholar
Mills, N.J., Beers, E.H., Shearer, P.W., Unruh, T.R. & Amarasekare, K.G. (2015) Comparative analysis of pesticide effects on natural enemies in western orchards: a synthesis of laboratory bioassay data. Biological Control 102, 1725.Google Scholar
Onstad, D.W. & Carrière, Y. (2013) The role of landscapes in insect resistance management. pp. 327371 in Onstad, D.W. (ed) Insect Resistance Management: Biology, Economics, and Prediction. 2nd edn. London, Academic Press.Google Scholar
Pathan, A.K., Sayyed, A.H., Aslam, M., Razaq, M., Jilani, G. & Saleem, M.A. (2008) Evidence of field-evolved resistance to organophosphates and pyrethroids in Chrysoperla carnea (Neuroptera: Chrysopidae). Journal of Economic Entomology 101, 16761684.Google Scholar
Robertson, J.L. & Preisler, H.K. (1992) Pesticide Bioassays with Arthropods. Boca Raton, CRC Press, 127p.Google Scholar
Robertson, J.L., Russel, R.M., Preisler, H.K. & Savin, N.E. (2007) Bioassays with Arthropods. 2nd edn. Boca Raton, CRC Press, 199p.Google Scholar
Rodrigues, A.R.S., Torres, J.B., Siqueira, H.A.A. & Lacerda, D.P.A. (2013 a) Inheritance of lambda-cyhalothrin resistance in the predator lady beetle Eriopis connexa (Germar) (Coleoptera: Coccinellidae). Biological Control 64, 217224.Google Scholar
Rodrigues, A.R.S., Ruberson, J.R., Torres, J.B., Siqueira, H.A.A. & Scott, J.G. (2013 b) Pyrethroid resistance and its inheritance in a field population of Hippodamia convergens (Guérin-Méneville) (Coleoptera: Coccinellidae). Pesticide Biochemistry and Physiology 105, 135143.Google Scholar
Rodrigues, A.R.S., Spíndola, A.F., Torres, J.B., Siqueira, H.A.A. & Colares, F. (2013 c) Response of different populations of seven lady beetle species to lambda-cyhalothrin with record of resistance. Ecotoxicological and Environmental Safety 96, 5360.Google Scholar
Rodrigues, A.R.S., Siqueira, H.A.A. & Torres, J.B. (2014) Enzymes mediating resistance to lambda-cyhalothrin in Eriopis connexa (Coleoptera: Coccinellidae). Pesticide Biochemistry and Physiology 110, 3643.Google Scholar
Roubos, C.R., Rodriguez-Saona, C., Holdcraft, R., Mason, K.S. & Isaacs, R. (2014) Relative toxicity and residual activity of insecticides used in blueberry pest management: mortality of natural enemies. Journal of Economic Entomology 107, 277285.Google Scholar
Ruberson, J.R., Roberts, P. & Michaud, J.P. (2007) Pyrethroid resistance in Georgia populations of the predator Hippodamia convergens (Coleoptera: Coccinellidae). Proceedings of Beltwide Cotton Conference 1, 361365.Google Scholar
SAS Institute (2002) SAS/STAT 9.2, User's Guide. Cary, NC, USA, SAS Institute.Google Scholar
Sicsú, P.R., Macedo, R.H. & Sujii, E.R. (2015) Oviposition site selection structures niche partitioning among coccinellid species in a tropical ecosystem. Neotropical Entomology 44, 430438.Google Scholar
Silva, T.B.M., Siqueira, H.A.A., Oliveira, A.C., Torres, J.B., Oliveira, J.V., Montarroyos, P.A.V. & Farias, M.J.D.C. (2011) Insecticide resistance in Brazilian populations of the cotton leaf worm, Alabama argillacea. Crop Protection 30, 11561161.Google Scholar
Spíndola, A.F., Silva-Torres, C.S.A., Rodrigues, A.R.S. & Torres, J.B. (2013) Survival and behavioural responses of the predatory ladybird beetle, Eriopis connexa populations susceptible and resistant to a pyrethroid insecticide. Bulletin of Entomological Research 103, 485494.Google Scholar
Talebi, K., Kavousi, A. & Sabahi, Q. (2008) Impacts of pesticides on arthropod biological control agents. Pest Technology 2, 8797.Google Scholar
Theiling, K.M. & Croft, B.A. (1988) Pesticide side-effects on arthropod natural enemies: a database summary. Agriculture, Ecosystems & Environment 21, 191218.Google Scholar
Torres, J.B. (2012) Insecticide resistance in natural enemies - seeking for integration of chemical and biological controls. Journal of Biofertilzer and Biopesticide 3, e104.Google Scholar
Torres, J.B. & Ruberson, J.R. (2005) Canopy- and ground-dwelling predatory arthropods in commercial Bt and non-Bt cotton fields: patterns and mechanisms. Environmental Entomology 34, 12421256.Google Scholar
Torres, J.B., Rodrigues, A.R.S., Barros, E.M. & Santos, D.S. (2015) Lambda-cyhalothrin resistance in the lady beetle Eriopis connexa (Coleoptera: Coccinellidae) confers tolerance to other pyrethroids. Journal Economic Entomology 108, 6068.Google Scholar
Whalon, M.E., Mota-Sanchez, D., Hollingworth, R.M. & Duynslager, L. (2016) Arthropod pesticide resistance database. http://www.pesticideresistance.org/search.php, accessed 26 June 2016.Google Scholar
Wirtz, K., Bala, S., Amann, A. & Elbert, A. (2009) A promise extended future role of pyrethroids in agriculture. Bayer CropScience Journal 62, 145157.Google Scholar