Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T17:56:17.331Z Has data issue: false hasContentIssue false

A deep-sea foraminiferal assemblage scattered through the late Cenozoic of Antarctic Peninsula and its biostratigraphic and biogeographic implications

Published online by Cambridge University Press:  27 January 2022

Victor C.S. Badaró*
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Rua do Lago 562, São Paulo 05508-080, Brazil
Setembrino Petri
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Rua do Lago 562, São Paulo 05508-080, Brazil
*
*Corresponding author

Abstract

Our knowledge of the foraminiferal fossil record of Antarctica is notoriously patchy but still offers us an overview of its Cenozoic faunas. Few occurrences have been reported for the continent, with deep-sea assemblages described mainly for its eastern portion. Here we describe 21 taxa of large agglutinated foraminifers from the Miocene Hobbs Glacier Formation and the Plio-Pleistocene Weddell Sea Formation on Seymour Island, West Antarctica, including the gigantic Ammodiscus vastus new species. Most of them consist of genera or species typical of deep-sea agglutinated assemblages. All specimens are completely filled and partially covered by lithified micrite. This, along with the postfill fragmentation of some tests, indicates their re-elaboration from older deposits. Because all of these foraminifers share the same taphonomic features and most of them represent taxa associated with deep-sea settings, they probably represent a flysch-type assemblage from an unknown deposit that was eroded and had its microfossils scattered through post-Paleogene sediments. A Paleocene age for this putative assemblage is indicated by the presence of Reticulophragmiun garcilassoi (Frizzell, 1943), a Paleocene index fossil, and by its association with the Cretaceous–Paleocene Ammodiscus pennyi Cushman and Jarvis, 1928. If taken as a coherent foraminiferal assemblage, it represents one of the few deep-sea assemblages known for West Antarctica, and the first flysch-type assemblage recognized for the Antarctic Cenozoic. In addition, it would show that the Paleocene foraminiferal communities of the West Antarctica's deep-sea floor were more like their Pacific counterparts than their Atlantic equivalents.

UUID: http://zoobank.org/0d281489-c0c6-47b4-9884-f820806485b7

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alekseychik-Mitskevich, L.S., 1973, [K klassifikatsii foraminifer semeystva Haplophragmiidae]: Trudy Vserossiyskiy Neftyanoy Nauchno-issledovatel'skiy Geologorazvedochnyy Instituta, v. 343, p. 1244. [in Russian]Google Scholar
Avnimelech, M., 1952, Revision of the tubular Monothalamia: Contributions from the Cushman Foundation for Foraminiferal Research, v. 3, p. 6068.Google Scholar
Badaró, V.C.S., 2019, Indigenous agglutinated foraminifera from the Eocene La Meseta Formation, Seymour Island, West Antarctica: Polish Polar Research, v. 40, p. 129137.Google Scholar
Badaró, V.C.S., and Petri, S., 2019, Miocene and Plio-Pleistocene foraminiferal assemblages from Seymour Island, Antarctica: Antarctic Science, v. 31, p. 254262, https://doi.org/10.1017/S0954102019000294.CrossRefGoogle Scholar
Beck, R.E., 1943, Eocene Foraminifera from Cowlitz River Lewis County, Washington: Journal of Paleontology, v. 17, p. 584614.Google Scholar
Beckmann, J.P., 1991, New taxa of Foraminifera from the Cretaceous and basal Tertiary of Trinidad, West Indies: Eclogae Geologae Helvetiae, v. 84, p. 819835.Google Scholar
Beldean, C., and Filipescu, S., 2011, ‘Flysch-type’ agglutinated Foraminifera from the Lower Miocene of the Transylvanian Basin (Romania), in Kaminski, M.A., and Filipescu, S., eds., Proceedings, International Workshop on Agglutinated Foraminifera, 8th, Cluj-Napoca, Romania, 7–13 September 2008: Kraków, Grzybowski Foundation, p. 118.Google Scholar
Berggren, W.A., and Kaminski, M.A., 1990, Abyssal agglutinates: Back to basics, in Hemleben, C., Kaminski, M.A., Kuhnt, W., and Scott, D.B., eds., Paleoecology, Biostratigraphy, Paleoceanography and Taxonomy of Agglutinated Foraminifera: Dordrecht, The Netherlands, Kluwer Academic Publishers, p. 5376.CrossRefGoogle Scholar
Berry, E.W., 1928, The smaller foraminifera of the middle Lobitos Shales of northwestern Peru: Eclogae Geologae Helvetiae, v. 21, p. 390405.Google Scholar
Bindiu-Haitonic, R., and Filipescu, S., 2016, Paleocene ‘flysch-type’ agglutinated Foraminifera from the northern part of the eastern Carpathians (Romania): Studia UBB Geologia, v. 60, no. 2, p. 1730, https://dx.doi.org/10.5038/1937-8602.60.2.1294.CrossRefGoogle Scholar
Birkenmajer, K., and Łuczkowska, E., 1987, Foraminiferal evidence for a lower Miocene age of glaciomarine and related strata, Moby Dick Group, King George Island (South Shetlands Islands, Antarctica): Studia Geologica Polonica, v. 90, p. 81123.Google Scholar
Bjil, P.K., Pross, J., Warnaar, J., Stickley, C.E., Huber, M., Guerstein, R., Houben, A.J.P., Sluijs, A., Visscher, H., and Brinkhuis, H., 2011, Environmental forcings of Paleogene Southern Ocean dinoflagellate biogeography: Paleoceanography and Paleoclimatology, v. 26, p. 112, https://doi.org/10.1029/2009PA001905.Google Scholar
Bolli, H.M., Beckmann, J.P., and Saunders, J.B., 1994, Benthic foraminiferal biostratigraphy of the south Caribbean region: Cambridge, UK, Cambridge University Press, 408 p.CrossRefGoogle Scholar
Bornemann, L.G., 1874, Ueber die Foraminiferengattung Involutina: Zeitschrift der Deutschen Geologischen Gesellschaft, v. 26, p. 702740.Google Scholar
Bowman, V., Ineson, J., Riding, J., Crame, J., Francis, J., Condon, D., Whittle, R., and Ferraccioli, F., 2016, The Paleocene of Antarctica: Dinoflagellate cyst biostratigraphy, chronostratigraphy and implications for the palaeo-Pacific margin of Gondwana: Gondwana Research, v. 38, p. 132148, https://doi.org/10.1016/j.gr.2015.10.018.CrossRefGoogle Scholar
Brady, H.B., 1871, On Saccammina carteri, a new foraminifer from the Carboniferous limestone of Northumberland: Annals and Magazine of Natural History, v. 7, p. 177184.CrossRefGoogle Scholar
Brady, H.B., 1878, On the reticularian and radiolarian Rhizopoda (Foraminifera and Polycystina) of the North-Polar Expedition of 1875–76: Annals and Magazine of Natural History, ser. 5, v. 1, p. 425440.CrossRefGoogle Scholar
Brady, H.B., 1879, Notes on some of the reticularian Rhizopoda of the ‘Challenger’ Expedition: Quarterly Journal of Microscopical Science, v. 19, p. 2067.Google Scholar
Brady, H.B., 1881, Notes on some of the reticularian Rhizopoda of the ‘Challenger’ Expedition, Part 3: Quarterly Journal of Microscopical Science, v. 21, p. 3171.Google Scholar
Brady, H.B., 1884, Report on the Foraminifera dredged by H.M.S. Challenger during the Years 1873–1876: H.M.S. Challenger Reports, Zoology, v. 9, p. 1814.Google Scholar
Burton-Johnson, A., and Riley, T.R., 2015, Autochthonous v. accreted terrane development of continental margins: A revised in situ tectonic history of the Antarctic Peninsula: Journal of the Geological Society, v. 172, p. 822835, https://doi.org/10.1144/jgs2014-110.CrossRefGoogle Scholar
Butt, A., 1981, Depositional environment of the Upper Cretaceous rocks in the northern parts of the eastern Alps: Cushman Foundation for Foraminiferal Research, v. 20, p. 5121.Google Scholar
Caramés, A., and Concheyro, A., 2013, Late Cenozoic Foraminifera from diamictites of Cape Lamb, Vega Island, Antarctic Peninsula: Ameghiniana, v. 50, p. 114135, https://doi.org/10.5710/AMGH.7.2.2013.588.CrossRefGoogle Scholar
Carpenter, W.B., 1869, On the rhizopodal fauna of the deep sea: Proceedings of the Royal Society of London, v. 18, p. 5962.Google Scholar
Chamney, T.P., 1969, Barremian Textulariina, Foraminifera from Lower Cretaceous beds, Mount Goodenough section, Aklavik Range, District of Mackenzie: Geological Survey of Canada Bulletin, v. 185, p. 141.Google Scholar
Chapman, F., 1904, On some Cainozoic foraminifera from Brown's Creek, Otway Coast: Records of the Geological Survey of Victoria, v. 1, p. 227230.Google Scholar
Claybourn, T.M., Jacquet, S.M., Skovsted, C.B., Topper, T.P., Holmer, L.E., and Brock, G.A., 2019, Mollusks from the upper Shackleton Limestone (Cambrian Series 2), central Transantarctic Mountains, East Antarctica: Journal of Paleontology, v. 93, p. 437459, https://doi.org/10.1017/jpa.2018.84.CrossRefGoogle Scholar
Cole, K.E., and Valentine, A.M., 2005, Titanium biomaterials: Titania needles in the test of the foraminiferan Bathysiphon argenteus: Dalton Transactions, v. 3, p. 430432, https://doi.org/10.1039/b508989a.Google Scholar
Conato, V., and Segre, A.G., 1974, Depositi marini quaternari e nuovi foraminiferi dell'Antartide (Terra Victoria, Valle Wright): Atti della Societa Toscana di Scienze Naturali Residente in Pisa, v. 81, p. 623.Google Scholar
Concheyro, A., Salani, F.M., Adamonis, S., and Lirio, J.M., 2007, Los depósitos diamictíticos cenozoicos de la cuenca James Ross, Antártida: Una síntesis estratigráfica y nuevos hallazgos paleontológicos: Revista de la Asociación Geológica Argentina, v. 62, p. 568585.Google Scholar
Cushman, J.A., 1910, A monograph of the foraminifera of the North Pacific Ocean, Part 1: Astrorhizidae and Lituolidae: Bulletin of the United States National Museum, v. 71, no. 1, p. 1134.Google Scholar
Cushman, J.A., 1911, A monograph of the foraminifera of the North Pacific Ocean, Part 2: Textulariidae: Bulletin of the United States National Museum, v. 71, no. 2, p. 1108.Google Scholar
Cushman, J.A., 1917, New species and varieties of foraminifera from the Philippines and adjacent waters: Proceedings of the United States National Museum, v. 51, p. 651662.CrossRefGoogle Scholar
Cushman, J.A., 1919, Recent foraminifera from off New Zealand: Proceedings of the United States National Museum, v. 56, p. 593640.CrossRefGoogle Scholar
Cushman, J.A., 1927, Recent Foraminifera from off the west coast of America: Bulletin of Scripps Institution of Oceanography, Technical Series, v. 1, p. 119188.Google Scholar
Cushman, J.A., 1928, Foraminifera: their classification and economic use: Cushman Laboratory for Foraminiferal Research Special Publication, v. 1, p. 1401.Google Scholar
Cushman, J.A., and Alexander, C.I., 1930, Some vaginulinas and other foraminifera from the Lower Cretaceous of Texas: Contributions from the Cushman Laboratory for Foraminiferal Research, v. 6, p. 110.Google Scholar
Cushman, J.A., and Jarvis, P.W., 1928, Cretaceous Foraminifera from Trinidad: Contributions from the Cushman Laboratory for Foraminiferal Research, v. 4, p. 85103.Google Scholar
Cushman, J.A., and Renz, H.H., 1948, Eocene foraminifera of the Navet and Hospital Hill formations of Trinidad, B.W.I.: Cushman Laboratory for Foraminiferal Research Special Publication, v. 24, p. 142.Google Scholar
Dailey, D.H., 1983, Late Cretaceous and Paleocene benthic foraminifers from Deep Sea Drilling Project site 516, Rio Grande Rise, western South Atlantic Ocean: Initial Reports of the Deep Sea Drilling Project, v. 72, p. 757782.Google Scholar
de Blainville, H.M.D., 1827, Manuel de Malacologie et de Conchyliologie: Paris, F. G. Levrault, 647 p.Google Scholar
Decima, F.P., and Bolli, H.M., 1978, Late Cretaceous and Paleocene benthic foraminifers from Deep Sea Drilling Project site 516, Rio Grande Rise, western South Atlantic Ocean: Initial Reports of the Deep Sea Drilling Project, v. 72, p. 757782.Google Scholar
Dhillon, D.S., 1968, A new genus of the Haplophragmoidinae from Malaysia: Contributions from the Cushman Foundation for Foraminiferal Research, v. 19, p. 140141.Google Scholar
Dingle, R.V., and Lavelle, M., 1998, Antarctic peninsular cryosphere: Early Oligocene (c. 30 M) initiation and a revised glacial chronology: Journal of the Geological Society, v. 155, p. 422437.Google Scholar
d'Orbigny, A.M.D., 1826, Tableau méthodique de la classe des Céphalopodes: Annales des Sciences Naturelles, v. 7, p. 245314.Google Scholar
d'Orbigny, A.M.D., 1839, Foraminifères des Iles Canaries, in Barker-Webb, P., and Berthelot, S., eds., Histoire Naturelle des Iles Canaries, Tome 2, Part 2: Paris, Béthune, p. 119146.Google Scholar
Earland, A., 1934, Foraminifera, part 3: The Falklands sector of the Antarctic (excluding South Georgia): Discovery Reports, v. 10, p. 1208.Google Scholar
Emiliani, C., 1954, The Oligocene microfaunas of the central part of the northern Apennines: Palaeontographica Italica, v. 48, p. 77184.Google Scholar
Fernández López, S., 1991, Taphonomic concepts for a theoretical biochronology: Revista Espanõla de Paleontología, v. 6, p. 3749.Google Scholar
Finger, K.L., 2013, Miocene foraminifera from the south-central coast of Chile: Micropaleontology, v. 59, p. 341492.CrossRefGoogle Scholar
Fiorini, F., 2009, Ammodiscus anulatus, a new species of benthic foraminifera from the Colombian Basin: Micropaleontology, v. 55, p. 9496.Google Scholar
Franke, A., 1912, Die Foraminiferen des Unter-Eocantones der Ziegelei Schwarzenbeck: Jahrbuch des Königlich Preussischen Geologischen Landesanstalt, v. 32, p. 106111.Google Scholar
Friedberg, W., 1902, Die Foraminiferen der Inoceramenschichten aus der Umgebung von Rzeszów und Dębica: Rozprawy Wydziału Matematyczno-Przyrodniczego Akademii Umiejętności, v. 3, p. 601668.Google Scholar
Frizzell, D.L., 1943, Upper Cretaceous foraminifera from northwestern Peru: Journal of Paleontology, v. 17, p. 331353.Google Scholar
Gaździcki, A., 1989, Planktonic foraminifera from the Oligocene Polonez Cove Formation of King George Island, West Antarctica: Polish Polar Research, v. 10, p. 4755.Google Scholar
Gaździcki, A., and Majewski, W., 2012, Foraminifera from the Eocene La Meseta Formation of Isla Marambio (Seymour Island), Antarctic Peninsula: Antarctic Science, v. 24, p. 408416.CrossRefGoogle Scholar
Gaździcki, A., and Webb, P.N., 1996, Foraminifera from the Pecten conglomerate (Pliocene) of Cockburn Island, Antarctic Peninsula: Palaeontologia Polonica, v. 55, p. 147174.Google Scholar
Gaździcki, A., Tatur, A., Hara, U., and Del Valle, R.A., 2004, The Weddell Sea Formation: Post-Late Pliocene terrestrial glacial deposits on Seymour Island, Antarctic Peninsula: Polish Polar Research, v. 25, p. 189204.Google Scholar
Glaessner, M.F., 1937, Studien über Foraminiferen aus der Kreide und dem Tertiär des Kaukasus: I-Die Foraminiferen der altesten Tertiärschichten des Nordwest-kaukasus: Problemy Paleontologii, v. 2/3, p. 349408.Google Scholar
Gooday, A.J., and Claugher, D., 1989, The genus Bathysiphon (Protista, Foraminiferida) in the northeast Atlantic: SEM observations on the wall structure of seven species: Journal of Natural History, v. 23, p. 591611.CrossRefGoogle Scholar
Gooday, A.J., and Jorissen, F.J., 2012, Benthic foraminiferal biogeography: Controls on global distribution patterns in deep-water settings: Annual Review of Marine Science, v. 4, p. 237262, https://doi.org/10.1146/annurev-marine-120709-142737.CrossRefGoogle ScholarPubMed
Gradstein, F.M., and Berggren, W.A., 1981, Flysch-type agglutinated foraminifera and the Maestrichtian to Paleogene history of the Labrador and North seas: Marine Micropaleontology, v. 6, p. 211269.Google Scholar
Grzybowski, J., 1898, Otwornice pokładów naftonośnych okolicy Krosna: Rozprawy Wydziału Matematyczno-Przyrodniczego Akademii Umiejętności, v. 33, p. 257305.Google Scholar
Hantken, M., 1868, [A kis-czelli tályag foraminiferái]: Magyar Foldtani Társulat Munkálatai, Pest, v. 4, p. 7596. [in Ukrainian]Google Scholar
Herrero, C., and Canales, M.L., 2002, Taphonomic processes in selected Lower and Middle Jurassic foraminifera from the Iberian range and Basque-Cantabrian Basin (Spain): Journal of Foraminiferal Research, v. 32, p. 2242, https://doi.org/10.2113/0320022.CrossRefGoogle Scholar
Höglund, H., 1947, Foraminifera in the Gullmar Fjord and the Skagerak: Uppsala, Sweden, Appelbergs Boktryckeri, 328 p., 32 pls.Google Scholar
Hohenegger, J., and Piller, W., 1975, Wandstrukturen und Großgliederung der Foraminiferen: Sitzungberichten der Österreichische Akademie der Wissenschaften, v. 184, p. 67117.Google Scholar
Holbourn, A., Henderson, A.S., and MacLeod, N., 2013, Atlas of Benthic Foraminifera: Oxford, UK, Wiley-Blackwell/Natural History Museum, 642 p.CrossRefGoogle Scholar
Huber, B.T., 1988, Upper Campanian-Paleocene foraminifera from the James Ross Island region, Antarctic Peninsula, in Feldmann, R.M., and Woodburne, M.O., eds., Geology and Paleontology of Seymour Island, Antarctic Peninsula: Geological Society of America, Memoir 169, p. 163252.CrossRefGoogle Scholar
Huber, B.T., 1991, Foraminiferal biogeography of the Late Cretaceous Southern high latitudes, in Thomson, M.R.A., Crame, J.A., and Thomson, J.W., eds., Geological Evolution of Antarctica: Cambridge, UK, Cambridge University Press, p. 609615.Google Scholar
Jones, R.W., 1994, The Challenger foraminifera: Oxford, UK, Oxford University Press, 149 p., 115 pls.Google Scholar
Jones, R.W., and Pudsey, C.A., 1994, Recent benthonic foraminifera from the western Antarctic Ocean: Journal of Micropalaeontology, v. 13, p. 1323.CrossRefGoogle Scholar
Jones, T.R., and Parker, W.K., 1860, On the rhizopodal fauna of the Mediterranean, compared with that of the Italian and some other Tertiary deposits: Quarterly Journal of the Geological Society of London, v. 16, p. 292307.Google Scholar
Jonkers, H.A., Lirio, J.M., Delvalle, R.A., and Kelley, S.P., 2002, Age and environment of Miocene-Pliocene glaciomarine deposits, James Ross Island, Antarctica: Geological Magazine, v. 139, p. 577594.CrossRefGoogle Scholar
Jordan, T.A., Riley, T.E., and Siddoway, C.S., 2020, The geological history and evolution of West Antarctica: Nature Reviews Earth & Environment, v. 1, p. 117133.CrossRefGoogle Scholar
Kaminski, M.A., 2004, The year 2000 classification of the agglutinated foraminifera, in Bubík, M., and Kaminski, M.A., eds., Proceedings, International Workshop on Agglutinated Foraminifera, 6th, Prague, Czech Republic, 1–7 September 2001: Kraków, Grzybowski Foundation, p. 237255.Google Scholar
Kaminski, M.A., and Gradstein, F.M., 2005, Atlas of Paleogene Cosmopolitan Deep-Water Agglutinated Foraminifera: Kraków, Grzybowski Foundation, 548 p.Google Scholar
Kaminski, M.A., Gradstein, F.M., and Berggren, W.A., 1988, Flysch-type agglutinated foraminiferal assemblages from Trinidad: Taxonomy, stratigraphy and paleobathymetry: Abhandlungen der Geologischen Bundesanstalt, v. 41, p. 155227.Google Scholar
Kaminski, M.A., Gradstein, F.M., and Geroch, S., 1992, Uppermost Jurassic to Lower Cretaceous deep-water benthic foraminiferal assemblages from site 765 on the Argo Abyssal Plain: Proceedings of the Ocean Drilling Program, Scientific Results, v. 123, p. 239269.Google Scholar
Kaminski, M.A., Waśkowska, A., and Chan, S., 2016, Haplophragmoides arcticus, n. sp.—A new species from the Pleistocene of the Central Arctic Ocean: Micropaleontology, v. 62, p. 509513.CrossRefGoogle Scholar
Kavary, E., and Frizzell, D.L., 1964, Upper Cretaceous and lower Cenozoic foraminifera from west-central Iran: Missouri University School of Mines & Metallurgy Bulletin, Technical Series, v. 102, p. 389.Google Scholar
Khalilov, D.M., 1959, [Novyye vidy foraminifer Valanzhin-Goterivskikh otlozheniy severo-vostochnogo Azerbaydzhana]: Izvestiya Akademii Nauk Azerbaydzhanskoy SSR, Seriya Geologo-Geograficheskikh Nauk, v. 6, p. 2536. [in Russian]Google Scholar
Koutsoukos, E.A.M., 2000, ‘Flysch-type’ foraminiferal assemblages in the Cretaceous of northeastern Brazil, in Hart, M.B., Kaminski, M.A., and Smart, C.W., eds., Proceedings, International Workshop on Agglutinated Foraminifera, 5th, Plymouth, UK, 6–16 September 1997: Kraków, Grzybowski Foundation, p. 243260.Google Scholar
Kuhnt, W., Collins, E., and Scott, D.B., 2000, Deep water agglutinated foraminiferal assemblages across the Gulf Stream: Distribution patterns and taphonomy, in Hart, M.B., Kaminski, M.A., and Smart, C.W., eds., Proceedings, International Workshop on Agglutinated Foraminifera, 5th, Plymouth, UK, 6–16 September 1997: Kraków, Grzybowski Foundation, p. 261298.Google Scholar
Lankester, E.R., 1885, Protozoa, in Encyclopedia Britannica, 9th ed., v. 19: Edinburgh, Adam and Charles Black, p. 830866.Google Scholar
LeRoy, D.O., and Hodgkinson, K.A., 1975, Benthonic Foraminifera and some Pteropoda from a deep-water dredge sample, northern Gulf of Mexico: Micropaleontology, v. 21, p. 420447.CrossRefGoogle Scholar
Lipman, R.K., Burtman, E.S., and Khokhlova, I.A., 1960, [Stratigrafiya i fauna paleogenovykh otlozheniy Zapadno-Sibirskoy nizmennosti]: Trudy Vsesoyuznogo Geologicheskogo Instituta, n. ser., v. 28, p. 1231. [in Russian]Google Scholar
Loeblich, A.R. Jr., and Tappan, H., 1949, New Kansas Lower Cretaceous foraminifera: Journal of the Washington Academy of Sciences, v. 39, p. 9092.Google Scholar
Loeblich, A.R. Jr., and Tappan, H., 1954, Emendation of the foraminiferal genera Ammodiscus Reuss, 1862, and Involutina Terquem, 1862: Journal of the Washington Academy of Sciences, v. 44, p. 306310.Google Scholar
Loeblich, A.R. Jr., and Tappan, H., 1964, Sarcodina, chiefly ‘Thecamoebians’ and Foraminiferida, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part C, Protista 2, 2 Volumes: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America (and University of Kansas Press), 900 p.Google Scholar
Loeblich, A.R. Jr., and Tappan, H., 1984, Some new proteinaceous and agglutinated genera of Foraminiferida: Journal of Paleontology, v. 58, p. 11581163.Google Scholar
Loeblich, A.R. Jr., and Tappan, H., 1987, Foraminiferal Genera and Their Classification, 2 Volumes: New York, Van Nostrand Reinhold, 970 p., 847 pls.Google Scholar
Loeblich, A.R. Jr., and Tappan, H., 1989, Implications of wall composition and structure in agglutinated foraminifers: Journal of Paleontology, v. 63, p. 769777.CrossRefGoogle Scholar
Loeblich, A.R. Jr., and Tappan, H., 1992, Present status of foraminiferal classification, in Takayanagi, Y., and Saito, T., eds., Studies in Benthic Foraminifera: Tokay, Japan, Tokay University Press, p. 93102.Google Scholar
Ludbrook, N.H., 1977, Early Tertiary Cyclammina and Haplophragmoides (Foraminiferida: Lituolidae) in southern Australia: Transactions of the Royal Society of South Australia, v. 101, p. 165198.Google Scholar
Macellari, C.E., 1988, Stratigraphy, sedimentology, and paleoecology of Upper Cretaceous/Paleocene shelf-deltaic sediments of Seymour Island: Geological Society of America Memoirs, v. 169, p. 2553.CrossRefGoogle Scholar
Majewski, W., and Gaździcki, A., 2014, Shallow water benthic foraminifera from the Polonez Cove Formation (lower Oligocene) of King George Island, West Antarctica: Marine Micropaleontology, v. 111, p. 114, https://doi.org/10.1016/j.marmicro.2014.05.003.CrossRefGoogle Scholar
Majewski, W., Olempska, E., Kaim, A., and Anderson, J.B., 2012, Rare calcareous microfossils from middle Miocene strata, Weddell Sea off Antarctic Peninsula: Polish Polar Research, v. 33, p. 245257.CrossRefGoogle Scholar
Majewski, W., Tatur, A., Witkowski, J., and Gaździcki, A., 2017, Rich shallow-water benthic ecosystem in late Miocene East Antarctica (Fisher Bench Fm, Prince Charles Mountains): Marine Micropaleontology, v. 133, p. 4049, https://doi.org/10.1016/j.marmicro.2017.06.002.CrossRefGoogle Scholar
Majewski, W., Bart, P.J., and McGlannan, A.J., 2018, Foraminiferal assemblages from the ice-proximal paleo-settings in the Whales Deep Basin, eastern Ross Sea, Antarctica: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 493, p. 6481, https://doi.org/10.1016/j.palaeo.2017.12.041.CrossRefGoogle Scholar
Majzon, L., 1943, [Adatok egyes Kárpátaljai Flisrétegekhez, tekintettel a Globotruncanákra]: A Magyar Királyi Földtani Intézet, Évkönyve, v. 37, p. 1170. [in Ukrainian]Google Scholar
Makled, W.A., and Langer, M.R., 2010, Preferential selection of titanium-bearing minerals in agglutinated Foraminifera: Ilmenite (FeTiO3) in Textularia hauerii d'Orbigny from the Bazaruto Archipelago, Mozambique: Revue de Micropaléontologie, v. 53, p. 163173, https://doi.org/10.1016/j.revmic.2009.11.001.CrossRefGoogle Scholar
Malagnino, E.C., Olivero, E.B., Rinaldi, C.A., and Spikermann, Y.J.P., 1981, Aspectos geomórfologicos de la Isla Vicecomodoro Marambio, Antártida, in Irigoyen, M., ed., Proceedings 2, Congreso Geológico Argentino, 8th, San Luis, Argentina, 20–26 September 1981: Buenos Aires, Asociación Geológica Argentina, p. 883896.Google Scholar
Marenssi, S.A., Casadío, S., and Santillana, S.N., 2010, Record of late Miocene glacial deposits on Isla Marambio (Seymour Island), Antarctic Peninsula: Antarctic Science, v. 22, p. 193198, https://doi.org/10.1017/S0954102009990629.CrossRefGoogle Scholar
Marenssi, S.A., Santillana, S., and Bauer, M., 2012, Estratigrafía, petrografía sedimentaria y procedencia de las formaciones Sobral y Cross Valley (Paleoceno), Isla Marambio (Seymour), Antártida: Andean Geology, v. 39, p. 6791.CrossRefGoogle Scholar
Marie, P., 1941, Les Foraminifères de la craie à Belemnitella mucronata du Bassin de Paris: Mémoires du Muséum National d'Histoire Naturelle de Paris, n. ser., v. 12, p. 1296.Google Scholar
Maslun, N.V., 1987, [Agglutiniruyushchie foraminifery pogranichnykh Eocene-Oligotsenovykh otlozhenyj Karpat]: Paleontologicheskiy Sbornik, v. 27, p. 6670. [in Russian]Google Scholar
Maync, W., 1952, Alveolophragmium venezuelanum n. sp. from the Oligo-Miocene of Venezuela: Contributions from the Cushman Foundation for Foraminiferal Research, v. 3, p. 141144.Google Scholar
Maync, W., 1955, Reticulophragmium, n. gen., a new name for Alveolophragmium Stschedrina, 1936 (pars): Journal of Paleontology, v. 29, p. 557558.Google Scholar
Maync, W., 1973, Lower Cretaceous foraminiferal fauna from Gorringe Bank, eastern North Atlantic: Initial Reports of the Deep Sea Drilling Project, v. 13, p. 10751135.Google Scholar
McNeil, D.H., 1997, New foraminifera from the Upper Cretaceous and Cenozoic of the Beaufort-MacKenzie Basin of Arctic Canada: Cushman Foundation for Foraminiferal Research Special Publication, v. 35, p. 195.Google Scholar
Mikhalevich, V.I., 1980, [Sistematika i evolyutsiya foraminifera v svete novykh dannykh po ikh tsitologii i ul'trastrukture]: Trudy Zoologicheskogo Instituta, v. 94, p. 4261. [in Russian]Google Scholar
Mikhalevich, V.I., 2004, On the heterogeneity of the former Textulariina (Foraminifera), in Bubik, M., and Kaminski, M.A., eds., Proceedings, International Workshop on Agglutinated Foraminifera, 6th, Prague, Czech Republic, 1–7 September 2001: Kraków, Grzybowski Foundation, p. 317349.Google Scholar
Milner, G.J., 1997, Paleogene foraminiferal studies in the western Pacific [Ph.D. thesis]: Perth, University of Western Australia, 302 p.Google Scholar
Mjatliuk, E.V., 1970, [Foraminifery flishevykh otlozheniy vostochnykh Karpat (Mel-Paleogen)]: Trudy Vsesoyuznogo Neftyanogo Nauchno-Issledovatel'skogo Geologo-razvedochnogo Instituta, v. 282, p. 1225. [in Russian]Google Scholar
Montagu, G., 1803, Testacea Britannica, or, British Shells, 2 Volumes: London, J. White, 606 p., 16 pls.Google Scholar
Montes, M., Nozal, F., Santillana, S., Marenssi, S., and Olivero, E., 2013, Mapa geológico de la Isla Marambio (Seymour): Buenos Aires, Instituto Geológico y Minero de España/Instituto Antártico Argentino, scale 1:20.000.Google Scholar
Muftah, A.M., 1995, Agglutinated foraminifera from the Danian sediments of the northeastern Sirte Basin, in Kaminski, M.A., and Geroch, S., eds., Proceedings, International Workshop on Agglutinated Foraminifera, 4th, Kraków, 12–19 September 1993: Kraków, Grzybowski Foundation, p. 173180.Google Scholar
Myatlyuk, E.V., 1939, [Foraminifera of the Upper Jurassic and the Lower Cretaceous of the region of the Middle Volga River and the Great Syrte.] Trudy VNIGRI [Vsesoyuznogo Neftyanogo Nauchno-Issledovatel'skogo Geologo-razvedochnogo Instituta], v. 120, 176. [in Russian]Google Scholar
Noth, R., 1951, Foraminiferen aus Unter- und Oberkreide des österreichischen Anteils an Flysch, Helvetikum und Vorlandvorkommen: Jahrbuch der Geologischen Bundesanstalt Sonderband. v. 3, p. 191.Google Scholar
Olivero, E.B., Ponce, J.J., Marsicano, C.A., and Martinioni, D.R., 2007, Depositional settings of the basal López de Bertodano Formation, Maastrichtian, Antarctica: Revista de la Asociación Geológica Argentina, v. 62, p. 521529.Google Scholar
Orians, K.J., Boyle, E.A., and Bruland, K.W., 1990, Dissolved titanium in the open ocean: Nature, v. 348, p. 322325.CrossRefGoogle Scholar
Pawlowski, J., Holzmann, M., and Tyszka, J., 2013, New supraordinal classification of foraminifera: Molecules meet morphology: Marine Micropaleontology, v. 100, p. 110, https://doi.org/10.1016/j.marmicro.2013.04.002.Google Scholar
Pflaumann, U., 1964, Geologisch-mikropaläontologische Untersuchungen in der Flysch-Oberkreide zwischen Wertach und Chiemsee in Bayern: München, Ludwig Maximilian Universität, 180 p.Google Scholar
Pflum, C.E., 1966, The distribution of foraminifera in the eastern Ross Sea, Amundsen Sea, and Bellingshausen Sea, Antarctica: Bulletins of American Paleontology, v. 50, p. 151209.Google Scholar
Pirrie, D., Crame, J.A., Riding, J.B., Butcher, A.R., and Taylor, P.D., 1997a, Miocene glaciomarine sedimentation in the northern Antarctic Peninsula region: The stratigraphy and sedimentology of the Hobbs Glacier Formation, James Ross Island: Geological Magazine, v. 136, p. 745762.CrossRefGoogle Scholar
Pirrie, D., Crame, J.A., Lomas, S.A., and Riding, J.B., 1997b, Late Cretaceous stratigraphy of the Admiralty Sound region, James Ross Basin, Antarctica: Cretaceous Research, v. 18, p. 109137.CrossRefGoogle Scholar
Podobina, V.M., 2000, Palaeogene agglutinated foraminífera of the West Siberian geographical province, in Hart, M.B., Kaminski, M.A., and Smart, C.W., eds., Proceedings, International Workshop on Agglutinated Foraminifera, 5th, Plymouth, UK, 6–16 September 1997: Kraków, Grzybowski Foundation, p. 387396.Google Scholar
Quilty, P.G., 2010, Foraminifera from late Pliocene sediments of Heidemann Valley, Vestfold Hills, East Antarctica: Journal of Foraminiferal Research, v. 40, p. 193205, https://doi.org/10.2113/gsjfr.40.2.193.CrossRefGoogle Scholar
Reolid, M., 2008, Taphonomic features of Lenticulina as a tool for paleoenvironmental interpretation of midshelf deposits of the Upper Jurassic (Prebetic Zone, southern Spain): Palaios, v. 23, p. 482494, https://doi.org/10.2110/palo.2007.p07-032r.Google Scholar
Reuss, A.E., 1845, Die Versteinerungen der böhmischen Kreideformation: Stuttgart, E. Schweizerbart'sche Verlagsbuchhandlung und Druckerei, 58 p.Google Scholar
Reuss, A.E., 1851, Über die fossilen Foraminiferen und Entomostraceen der Septarianthone der Umgegend von Berlin: Zeitschrift der Deutschen Geologischen Gesellschaft, v. 3, p. 4991.Google Scholar
Reuss, A.E., 1862, Entwurf einer systematischen Zusammenstellung der Foraminiferen: Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe, Abteilung 1, Mineralogie, Botanik, Zoologie, Anatomie, Geologie und Paläontologie, v. 44, p. 355396.Google Scholar
Rhumbler, L., 1911, Die Foraminiferen (Talamophoren) der Plankton-Expedition: zugleich Entwurf eines natürlichen Systems der Foraminiferen auf Grund selektionistischer und mechanisch-physiologischer Faktoren: Ergebnisse der Plankton-Expedition der Humboldt-Stiftung, v. 3. p. 1331.Google Scholar
Rocha Campos, A.C., Kuchenbecker, M., Duleba, W., Santos, P.R., and Canile, F.M., 2017, A (tidal-marine) boulder pavement in the late Cenozoic of Seymour Island, West Antarctica: Contribution to the palaeogeographical and palaeoclimatic evolution of West Antarctica: Antarctic Science, v. 29, p. 555559, https://doi.org/10.1017/S0954102017000335.Google Scholar
Rögl, F., 1976, Late Cretaceous to Pleistocene foraminifera from the southeast Pacific Basin, DSDP Leg 35: Initial Reports of the Deep Sea Drilling Project, v. 35, p. 539555.Google Scholar
Rzehak, A., 1885, Bemerkungen über einige foraminiferen der Oligocän Formation: Verhandlungen des Naturforschenden Vereines in Brünn, v. 23, p. 123129.Google Scholar
Sadler, P. M., 1988, Geometry and stratification of the uppermost Cretaceous and Paleogene units on Seymour Island, northern Antarctic Peninsula: Geological Society of America Memoirs, v. 169, p. 303320.CrossRefGoogle Scholar
Saidova, K.M., 1975, [Bentosnyye foraminifery Tikhogo okeana-Bentosnyye foraminifery Tikhogo Okeana], 3 Volumes: Moscow, Akademiya Nauk SSSR, 875 p. [in Russian]Google Scholar
Saidova, K.M., 1981, [O sovremennom sostoyanii sistemy nadvidovykh taksonov kaynozoyskikh bentosnykh foraminifer]: Moscow, Akademiya Nauk SSSR, 73 p. [in Russian]Google Scholar
Sars, G.O., 1872, Undersøgelser over Hardangerfjordens fauna I: Förhadlingar i Videnskabsselskabet i Christiania, v. 1871, p. 246286.Google Scholar
Schröder-Adams, C.J., and McNeil, D.H., 1994, New paleoenvironmentally important species of agglutinated foraminifera from the Oligocene and Miocene of the Beaufort Sea, Arctic Canada: Journal of Foraminiferal Research, v. 24, p. 178190.CrossRefGoogle Scholar
Schubert, R.J., 1902, Neue und interessante foraminiferen aus dem südtiroler Altteriär: Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, v. 14, p. 926.Google Scholar
Schulze, R.E., 1875, Zoologische Ergebnisse der Nordseefahrt vom 21 Juli bis 9 September 1872, in Meyer, H.A. et al. , eds., Jahresberichte der Kommission zur wissenschaftlichen Untersuchung der Deutschen Meer in Kiel für die Jahre 1872 1873, II und III Jahrgang: Berlin, Wiegandt, Hempel, & Parey, p. 99114.Google Scholar
Sen Gupta, B.K., 1999, Systematics of modern foraminifera, in Sen Gupta, B.K., ed., Modern Foraminifera: Dordrecht, The Netherlands, Kluwer Academic Publishers, p. 736.CrossRefGoogle Scholar
Serova, M.Ya., 1987, [Foraminifery i biostratigrafia Severnoy Patsifiki na rubiezhie Mela i Paleogena]: Moscow, Izdatelstvo ‘Nauka,’ 144 p. [in Russian]Google Scholar
Setoyama, E., Kaminski, M.A., and Tyszka, J., 2011, Late Cretaceous agglutinated foraminifera and implications for the biostratigraphy and palaeobiogeography of the southwestern Barents Sea, in Kaminski, M.A., and Filipescu, S., eds., Proceedings, International Workshop on Agglutinated Foraminifera, 8th, Cluj-Napoca, Romania, 7–13 September 2008: Kraków, Grzybowski Foundation, p. 251309.Google Scholar
Shchedrina, Z.G., 1936, Alveolophragmium orbiculatum nov. gen., nov. sp.: Zoologischer Anzeiger, v. 114, p. 312319.Google Scholar
Soliman, H.A., 1972, New Upper Cretaceous foraminifera from Soviet Carpathian (USSR): Revue de Micropaleontologie, v. 15, p. 3544.Google Scholar
Subbotina, N.N., 1960, [Mikrofauna oligotsenovykh I Miotsenovykh otlozhenii r. Vorotyshche (Predkarpat'e)]: Trudy VNIGRI [Vsesoyuznogo Neftyanogo Nauchno-Issledovatel'skogo Geologo-razvedochnogo Instituta], v. 153, p. 157243. [in Russian]Google Scholar
Suleymanov, I.S., 1973, [Nekotoryye voprosy sistematiki semeystva Verneulinidae Sushman, 1927 v svyazi s usloviyami obitaniya]: Doklady Akademii Nauk Uzbekskoy SSR, v. 8, p. 3536. [in Russian]Google Scholar
Thomas, E., 1989, Development of Cenozoic deep-sea benthic foraminiferal faunas in Antarctic Waters, in Crame, J.A., ed., Origins and Evolution of the Antarctic Biota: Oxford, UK, Geological Society, p. 283296.Google Scholar
Thomas, F.C., and Murney, M.G., 1985, Techniques for extraction of foraminifers and ostracodes from sediment samples: Canadian Technical Report of Hydrography and Ocean Sciences, v. 54, p. 124.Google Scholar
Tjalsma, R.C., 1977, Cenozoic foraminifera from the South Atlantic, DSDP leg 36: Initial Reports of the Deep Sea Drilling Project, v. 36, p. 493518.Google Scholar
Tranter, T.H., 1992, Underplating of an accretionary prism: An example from the LeMay Group of central Alexander Island, Antarctic Peninsula: Journal of South American Earth Sciences, v. 6, p. 120.CrossRefGoogle Scholar
Voloshinova, N.A., and Budasheva, A.I., 1961, [Lituolidy i trokhamminidy iz Tretichnykh otlozheniy ostrova Sakhalina i poluostrova Kamchatki]: Trudy Vsesoyuznogo Neftyanogo Nauchno-Issledovatel'skogo Geologo-razvedochnogo Instituta, v. 170, p. 169233. [in Russian]Google Scholar
Vyalov, O.S., 1968, [Certain considerations on classification of siliceous foraminifera]: Dopovidi Akademiyi Nauk Ukrayins′koyi RSR, v. 1, p. 36. [in Ukrainian]Google Scholar
Waśkowska, A., and Kaminski, M.A., 2017, Ammodiscuslatus Grzybowski, 1898: Its taxonomy, variability, and affinity to the genus Trochamminoides Cushman, 1910, in Kaminski, M.A., and Alegret, L., eds., Proceedings, International Workshop on Agglutinated Foraminifera, 9th, Zaragoza, Spain, 3–7 September 2012: Kraków, Grzybowski Foundation, p. 229238.Google Scholar
Webb, P.N., 1973, Paleocene foraminifera from Wangaloa and Dunedin: New Zealand Journal of Geology and Geophysics, v. 16, p. 109157.CrossRefGoogle Scholar
Webb, P.N., 1975, Paleocene foraminifera from DSDP site 283, South Tasman Basin: Initial Reports of the Deep Sea Drilling Project, v. 29, p. 833843.Google Scholar
Webb, P.N., 1988, Upper Oligocene-Holocene foraminifera of the Ross Sea region: Revue de Paléobiologie, Special Volume, v. 2, p. 589603.Google Scholar
Widmark, J.G.V., 1997, Deep-sea benthic foraminifera from Cretaceous-Paleogene boundary strata in the South Atlantic—Taxonomy and paleoecology: Fossils & Strata, no. 43, p. 194.Google Scholar
Williamson, W.C., 1848, On the Recent British species of the genus Lagena: Annals and Magazine of Natural History, ser. 2, v. 1, p. 120.Google Scholar
Wrona, R., 1989, Cambrian limestone erratics in the Tertiary glacio-marine sediments of King George Island, West Antarctica: Polish Polar Research, v. 10, p. 533553.Google Scholar
Wrona, R., 2004, Cambrian microfossils from glacial erratics of King George Island, Antarctica: Acta Palaeontologica Polonica, v. 49, p. 1356.Google Scholar
Zinsmeister, W.J., and DeVries, T.J., 1983, Quaternary glacial marine deposits on Seymour Island: Antarctic Journal of the United States, v. 18, p. 6465.Google Scholar