Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-13T10:13:04.572Z Has data issue: false hasContentIssue false

Bronchoscopy-related outbreaks and pseudo-outbreaks: A systematic review

Published online by Cambridge University Press:  15 December 2023

Loukas Kakoullis*
Affiliation:
Department of Medicine, Mount Auburn Hospital, Cambridge, Massachusetts, United States Harvard Medical School, Boston, Massachusetts, United States
Sofia Economidou
Affiliation:
Department of Medicine, Mount Auburn Hospital, Cambridge, Massachusetts, United States Harvard Medical School, Boston, Massachusetts, United States
Preeti Mehrotra
Affiliation:
Harvard Medical School, Boston, Massachusetts, United States Division of Infection Controland Hospital Epidemiology, Silverman Institute for Health Care Quality and Safety, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
George Panos
Affiliation:
Department of Internal Medicine, Division of Infectious Diseases, University General Hospital of Patras, Patras, Greece
Theodoros Karampitsakos
Affiliation:
Ubben Center and Laboratory for Pulmonary Fibrosis Research, University of South Florida, Tampa, Florida, United States
Grigorios Stratakos
Affiliation:
Department of Respiratory Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, Athens, Greece
Argyrios Tzouvelekis
Affiliation:
Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
Fotios Sampsonas
Affiliation:
Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
*
Corresponding author: Loukas Kakoullis; Email: loukas.kakoullis@mah.harvard.edu

Abstract

Objective:

To identify and report the pathogens and sources of contamination associated with bronchoscopy-related outbreaks and pseudo-outbreaks.

Design:

Systematic review.

Setting:

Inpatient and outpatient outbreaks and pseudo-outbreaks after bronchoscopy.

Methods:

PubMed/Medline databases were searched according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, using the search terms “bronchoscopy,” “outbreak,” and “pseudo-outbreak” from inception until December 31, 2022. From eligible publications, data were extracted regarding the type of event, pathogen involved, and source of contamination. Pearson correlation was used to identify correlations between variables.

Results:

In total, 74 studies describing 23 outbreaks and 52 pseudo-outbreaks were included in this review. The major pathogens identified in these studies were Pseudomonas aeruginosa, Mycobacterium tuberculosis, nontuberculous mycobacteria (NTM), Klebsiella pneumoniae, Serratia marcescens, Stenotrophomonas maltophilia, Legionella pneumophila, and fungi. The primary sources of contamination were the use of contaminated water or contaminated topical anesthetics, dysfunction and contamination of bronchoscopes or automatic endoscope reprocessors, and inadequate disinfection of the bronchoscopes following procedures. Correlations were identified between primary bronchoscope defects and the identification of P. aeruginosa (r = 0.351; P = .002) and K. pneumoniae (r = 0.346; P = .002), and between the presence of a contaminated water source and NTM (r = 0.331; P = .004) or L. pneumophila (r = 0.280; P = .015).

Conclusions:

Continued vigilance in bronchoscopy disinfection practices remains essential because outbreaks and pseudo-outbreaks continue to pose a significant risk to patient care, emphasizing the importance of stringent disinfection and quality control measures.

Type
Review
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Society for Healthcare Epidemiology of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Trial registration: PROSPERO registration no. CRD42022375610

References

Miller, RJ, Casal, RF, Lazarus, DR, Ost, DE, Eapen, GA. Flexible bronchoscopy. Clin Chest Med 2018;39:116.CrossRefGoogle ScholarPubMed
Muscarella, LF. Dear Los Angeles Times: the risk of disease transmission during gastrointestinal endoscopy. Gastroenterol Nurs 2004;27:271278.10.1097/00001610-200411000-00006CrossRefGoogle ScholarPubMed
Lee, DH, Driver, BE, Prekker, ME, et al. Bronchoscopy in the emergency department. Am J Emerg Med 2022;58:114119.CrossRefGoogle ScholarPubMed
Ofstead, CL, Quick, MR, Wetzler, HP, et al. Effectiveness of reprocessing for flexible bronchoscopes and endobronchial ultrasound bronchoscopes. Chest 2018;154:10241034.CrossRefGoogle ScholarPubMed
Terjesen, CL, Kovaleva, J, Ehlers, L. Early assessment of the likely cost effectiveness of single-use flexible video bronchoscopes. PharmacoEconomics Open 2017;1:133141.10.1007/s41669-017-0012-9CrossRefGoogle ScholarPubMed
Sood, G, Perl, TM. Outbreaks in healthcare settings. Infect Dis Clin N Am 2016;30:661687.CrossRefGoogle Scholar
Galdys, AL, Marsh, JW, Delgado, E, et al. Bronchoscope-associated clusters of multidrug-resistant Pseudomonas aeruginosa and carbapenem-resistant Klebsiella pneumoniae . Infect Control Hosp Epidemiol 2019;40:4046.CrossRefGoogle ScholarPubMed
Page, MJ, McKenzie, JE, Bossuyt, PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71.CrossRefGoogle ScholarPubMed
Wells, G, Shea, B, O’Connell, D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed December 7, 2018.Google Scholar
Murad, MH, Sultan, S, Haffar, S, Bazerbachi, F. Methodological quality and synthesis of case series and case reports. Evid Based Med 2018;23:6063.Google ScholarPubMed
Salah, E. Primary cutaneous CD4+ small/medium pleomorphic T-cell lymphoproliferative disorder: where do we stand? A systematic review. J Ger Soc Dermatol 2019;17:123136.Google ScholarPubMed
Cêtre, JC, Nicolle, MC, Salord, H, et al. Outbreaks of contaminated broncho-alveolar lavage related to intrinsically defective bronchoscopes. J Hosp Infect 2005;61:3945.CrossRefGoogle ScholarPubMed
Schuetz, AN, Hughes, RL, Howard, RM, et al. Pseudo-outbreak of Legionella pneumophila serogroup 8 infection associated with a contaminated ice machine in a bronchoscopy suite. Infect Control Hosp Epidemiol 2009;30:461466.10.1086/596613CrossRefGoogle Scholar
Kioski, C, Montefour, K, Saubolle, M, et al. Pseudo-outbreak of Legionnaires disease among patients undergoing bronchoscopy—Arizona, 2008. Morb Mortal Wkly Rep 2009;58:849854.Google Scholar
Zhang, Y, Zhou, H, Jiang, Q, Wang, Q, Li, S, Huang, Y. Bronchoscope-related Pseudomonas aeruginosa pseudo-outbreak attributed to contaminated rinse water. Am J Infect Control 2020;48:2632.CrossRefGoogle ScholarPubMed
Guy, M, Vanhems, P, Dananché, C, et al. Outbreak of pulmonary Pseudomonas aeruginosa and Stenotrophomonas maltophilia infections related to contaminated bronchoscope suction valves, Lyon, France, 2014. Euro Surveill Bull 2016;21(28).Google ScholarPubMed
Schaffer, K, Fitzgerald, SF, Commane, M, Maguiness, A, Fenelon, LE. A pseudo-outbreak of Fusarium solani in an intensive care unit associated with bronchoscopy. J Hosp Infect 2008;69:400402.CrossRefGoogle Scholar
Flournoy, DJ, Petrone, RL, Voth, DW. A pseudo-outbreak of Methylobacterium mesophilica isolated from patients undergoing bronchoscopy. Eur J Clin Microbiol Infect Dis 1992;11:240243.10.1007/BF02098087CrossRefGoogle ScholarPubMed
Blake, M, Embil, JM, Trepman, E, Adam, H, Myers, R, Mutcher, P. Pseudo-outbreak of Phaeoacremonium parasiticum from a hospital ice dispenser. Infect Control Hosp Epidemiol 2014;35:10631065.CrossRefGoogle ScholarPubMed
Richardson, AJ, Rothburn, MM, Roberts, C. Pseudo-outbreak of Bacillus species: related to fibreoptic bronchoscopy. J Hosp Infect 1986;7:208210.CrossRefGoogle ScholarPubMed
Young, LS, Sabel, AL, Epidemiologic, Price CS., clinical, and economic evaluation of an outbreak of clonal multidrug-resistant Acinetobacter baumannii infection in a surgical intensive care unit. Infect Control Hosp Epidemiol 2007;28:12471254.CrossRefGoogle Scholar
Rosengarten, D, Block, C, Hidalgo-Grass, C, et al. Cluster of pseudoinfections with Burkholderia cepacia associated with a contaminated washer–disinfector in a bronchoscopy unit. Infect Control Hosp Epidemiol 2010;31:769771.CrossRefGoogle Scholar
Kiely, JL, Sheehan, S, Cryan, B, Bredin, CP. Isolation of Mycobacterium chelonae in a bronchoscopy unit and its subsequent eradication. Tuber Lung Dis 1995;76:163167.10.1016/0962-8479(95)90561-8CrossRefGoogle Scholar
Mitchell, DH, Hicks, LJ, Chiew, R, Montanaro, JC, Chen, SC. Pseudoepidemic of Legionella pneumophila serogroup 6 associated with contaminated bronchoscopes. J Hosp Infect 1997;37:1923.10.1016/S0195-6701(97)90069-4CrossRefGoogle ScholarPubMed
Gubler, JG, Salfinger, M, von Graevenitz, A. Pseudoepidemic of nontuberculous mycobacteria due to a contaminated bronchoscope cleaning machine: report of an outbreak and review of the literature. Chest 1992;101:12451249.10.1378/chest.101.5.1245CrossRefGoogle ScholarPubMed
Hoffmann, KK, Weber, DJ, Rutala, WA. Pseudoepidemic of Rhodotorula rubra in patients undergoing fiberoptic bronchoscopy. Infect Control Hosp Epidemiol 1989;10:511514.CrossRefGoogle ScholarPubMed
Bennett, SN, Peterson, DE, Johnson, DR, Hall, WN, Robinson-Dunn, B, Dietrich, S. Bronchoscopy-associated Mycobacterium xenopi pseudoinfections. Am J Respir Crit Care Med 1994;150:245250.CrossRefGoogle ScholarPubMed
Takigawa, K, Fujita, J, Negayama, K, et al. Eradication of contaminating Mycobacterium chelonae from bronchofibrescopes and an automated bronchoscope disinfection machine. Respir Med 1995;89:423427.10.1016/0954-6111(95)90211-2CrossRefGoogle Scholar
Nye, K, Chadha, DK, Hodgkin, P, Bradley, C, Hancox, J, Wise, R. Mycobacterium chelonei isolation from broncho-alveolar lavage fluid and its practical implications. J Hosp Infect 1990;16:257261.CrossRefGoogle ScholarPubMed
Siegman-Igra, Y, Inbar, G, Campus, A. An “outbreak” of pulmonary pseudoinfection by Serratia marcescens . J Hosp Infect 1985;6:218220.CrossRefGoogle ScholarPubMed
Stine, TM, Harris, AA, Levin, S, Rivera, N, Kaplan, RL. A pseudoepidemic due to atypical mycobacteria in a hospital water supply. JAMA 1987;258:809811.CrossRefGoogle Scholar
Bringhurst, J, Weber, DJ, Miller, MB, et al. A bronchoscopy-associated pseudo-outbreak of Mycobacterium mucogenicum traced to use of contaminated ice used for bronchoalveolar lavage. Infect Control Hosp Epidemiol 2020;41:124126.CrossRefGoogle ScholarPubMed
Seidelman, JL, Wallace, RJ, Iakhiaeva, E, et al. Mycobacterium avium pseudo-outbreak associated with an outpatient bronchoscopy clinic: lessons for reprocessing. Infect Control Hosp Epidemiol 2019;40:106108.CrossRefGoogle ScholarPubMed
Scorzolini, L, Mengoni, F, Mastroianni, CM, et al. Pseudo-outbreak of Mycobacterium gordonae in a teaching hospital: importance of strictly following decontamination procedures and emerging issues concerning sterilization. New Microbiol 2016;39:2534.Google Scholar
Campos-Gutiérrez, S, Ramos-Real, MJ, Abreu, R, Jiménez, MS, Lecuona, M. Pseudo-outbreak of Mycobacterium fortuitum in a hospital bronchoscopy unit. Am J Infect Control 2020;48:765769.10.1016/j.ajic.2019.11.019CrossRefGoogle Scholar
Chroneou, A, Zimmerman, SK, Cook, S, et al. Molecular typing of Mycobacterium chelonae isolates from a pseudo-outbreak involving an automated bronchoscope washer. Infect Control Hosp Epidemiol 2008;29:10881090.CrossRefGoogle ScholarPubMed
Fraser, VJ, Jones, M, Murray, PR, Medoff, G, Zhang, Y, Wallace, RJJ. Contamination of flexible fiberoptic bronchoscopes with Mycobacterium chelonae linked to an automated bronchoscope disinfection machine. Am Rev Respir Dis 1992;145:853855.CrossRefGoogle Scholar
Fernandes Garcia de Carvalho, N, Rodrigues Mestrinari, AC, Brandão, A, et al. Hospital bronchoscopy-related pseudo-outbreak caused by a circulating Mycobacterium abscessus subsp. massiliense. J Hosp Infect 2018;100:e138e141.CrossRefGoogle ScholarPubMed
Cox, R, deBorja, K, Bach, MC. A pseudo-outbreak of Mycobacterium chelonae infections related to bronchoscopy. Infect Control Hosp Epidemiol 1997;18:136137.CrossRefGoogle ScholarPubMed
Botana-Rial, M, Leiro-Fernández, V, Núñez-Delgado, M, et al. A pseudo-outbreak of Pseudomonas putida and Stenotrophomonas maltophilia in a bronchoscopy unit. Respiration 2016;92:274278.CrossRefGoogle Scholar
Ece, G, Erac, B, Limoncu, MH, Baysak, A, Oz, AT, Ceylan, KC. Stenotrophomonas maltophilia pseudo-outbreak at a university hospital bronchoscopy unit in Turkey. West Indian Med J 2014;63:5961.Google Scholar
Kressel, AB, Kidd, F. Pseudo-outbreak of Mycobacterium chelonae and Methylobacterium mesophilicum caused by contamination of an automated endoscopy washer. Infect Control Hosp Epidemiol 2001;22:414418.10.1086/501926CrossRefGoogle ScholarPubMed
Guimarães, T, Chimara, E, do Prado GVB, et al. Pseudo-outbreak of rapidly growing mycobacteria due to Mycobacterium abscessus subsp bolletii in a digestive and respiratory endoscopy unit caused by the same clone as that of a countrywide outbreak. Am J Infect Control 2016;44:e221e226.CrossRefGoogle Scholar
Schelenz, S, French, G. An outbreak of multidrug-resistant Pseudomonas aeruginosa infection associated with contamination of bronchoscopes and an endoscope washer–disinfector. J Hosp Infect 2000;46:2330.CrossRefGoogle Scholar
Sorin, M, Segal-Maurer, S, Mariano, N, Urban, C, Combest, A, Rahal, JJ. Nosocomial transmission of imipenem-resistant Pseudomonas aeruginosa following bronchoscopy associated with improper connection to the Steris System 1 processor. Infect Control Hosp Epidemiol 2001;22:409413.10.1086/501925CrossRefGoogle Scholar
Campagnaro, RL, Teichtahl, H, Dwyer, B. A pseudoepidemic of Mycobacterium chelonae: contamination of a bronchoscope and autocleaner. Aust N Z J Med 1994;24:693695.10.1111/j.1445-5994.1994.tb01785.xCrossRefGoogle ScholarPubMed
Prigogine, T, Glupczynski, Y, Van Molle, P, Schmerber, J. Mycobacterial cross contamination of bronchoscopy specimens. J Hosp Infect 1988;11:9395.CrossRefGoogle ScholarPubMed
Maloney, S, Weibel, S, Daves, B, et al. Mycobacterium abscessus pseudoinfection traced to an automated endoscope washer: utility of epidemiologic and laboratory investigation. J Infect Dis 1994;169:11661169.CrossRefGoogle Scholar
Blanc, DS, Parret, T, Janin, B, Raselli, P, Francioli, P. Nosocomial infections and pseudoinfections from contaminated bronchoscopes: two-year follow-up using molecular markers. Infect Control Hosp Epidemiol 1997;18:134136.CrossRefGoogle ScholarPubMed
Brown, NM, Reeves, DS, Hellyar, EA, Harvey, JE. Mycobacterial contamination of fibreoptic bronchoscopes. Thorax 1993;48:12831285.CrossRefGoogle ScholarPubMed
Waite, TD, Georgiou, A, Abrishami, M, Beck, CR. Pseudo-outbreaks of Stenotrophomonas maltophilia on an intensive care unit in England. J Hosp Infect 2016;92:392396.10.1016/j.jhin.2015.12.014CrossRefGoogle Scholar
Kirschke, DL, Jones, TF, Craig, AS, et al. Pseudomonas aeruginosa and Serratia marcescens contamination associated with a manufacturing defect in bronchoscopes. N Engl J Med 2003;348:214220.10.1056/NEJMoa021791CrossRefGoogle ScholarPubMed
Severino, P, Magalhães, VD. Integrons as tools for epidemiological studies. Clin Microbiol Infect 2004;10:156162.CrossRefGoogle ScholarPubMed
Ramsey, AH, Oemig, T V, Davis, JP, Massey, JP, Török, TJ. An outbreak of bronchoscopy-related Mycobacterium tuberculosis infections due to lack of bronchoscope leak testing. Chest 2002;121:976981.CrossRefGoogle ScholarPubMed
Zweigner, J, Gastmeier, P, Kola, A, Klefisch, FR, Schweizer, C, Hummel, M. A carbapenem-resistant Klebsiella pneumoniae outbreak following bronchoscopy. Am J Infect Control 2014;42:936937.CrossRefGoogle ScholarPubMed
Srinivasan, A, Wolfenden, LL, Song, X, et al. An outbreak of Pseudomonas aeruginosa infections associated with flexible bronchoscopes. N Engl J Med 2003;348:221227.CrossRefGoogle ScholarPubMed
DiazGranados, CA, Jones, MY, Kongphet-Tran, T, et al. Outbreak of Pseudomonas aeruginosa infection associated with contamination of a flexible bronchoscope. Infect Control Hosp Epidemiol 2009;30:550555.CrossRefGoogle ScholarPubMed
Abdolrasouli, A, Gibani, MM, de Groot, T, et al. A pseudo-outbreak of Rhinocladiella similis in a bronchoscopy unit of a tertiary-care teaching hospital in London, United Kingdom. Mycoses 2021;64:394404.CrossRefGoogle Scholar
Goldstein, B, Abrutyn, E. Pseudo-outbreak of Bacillus species: related to fibreoptic bronchoscopy. J Hosp Infect 1985;6:194200.CrossRefGoogle ScholarPubMed
Wheeler, PW, Lancaster, D, Kaiser, AB. Bronchopulmonary cross-colonization and infection related to mycobacterial contamination of suction valves of bronchoscopes. J Infect Dis 1989;159:954958.CrossRefGoogle ScholarPubMed
Cetre, J-C, Salord, H, Vanhems, P. Outbreaks of infection associated with bronchoscopes. N Engl J Med 2003;348:20392040.Google ScholarPubMed
Hagan, ME, Klotz, SA, Bartholomew, W, Potter, L, Nelson, M. A pseudoepidemic of Rhodotorula rubra: a marker for microbial contamination of the bronchoscope. Infect Control Hosp Epidemiol 1995;16:727728.CrossRefGoogle ScholarPubMed
Sammartino, MT, Israel, RH, Magnussen, CR. Pseudomonas aeruginosa contamination of fibreoptic bronchoscopes. J Hosp Infect 1982;3:6571.CrossRefGoogle ScholarPubMed
Hellinger, WC, Parth, HC, Smith, BT, et al. Adenovirus pseudo-outbreak associated with bronchoscopy. Infect Control Hosp Epidemiol 2019;40:13051308.CrossRefGoogle ScholarPubMed
Seidelman, JL, Akinboyo, IC, Taylor, B, et al. Pseudo-outbreak of adenovirus in bronchoscopy suite. Infect Control Hosp Epidemiol 2021;42:10161017.CrossRefGoogle ScholarPubMed
Cosgrove, SE, Ristaino, P, Caston-Gaa, A, et al. Caveat emptor: the role of suboptimal bronchoscope repair practices by a third-party vendor in a pseudo-outbreak of pseudomonas in bronchoalveolar lavage specimens. Infect Control Hosp Epidemiol 2012;33:224229.CrossRefGoogle Scholar
Jereb, JA, Burwen, DR, Dooley, SW, et al. Nosocomial outbreak of tuberculosis in a renal transplant unit: application of a new technique for restriction fragment length polymorphism analysis of Mycobacterium tuberculosis isolates. J Infect Dis 1993;168:12191224.CrossRefGoogle Scholar
Bou, R, Aguilar, A, Perpiñán, J, et al. Nosocomial outbreak of Pseudomonas aeruginosa infections related to a flexible bronchoscope. J Hosp Infect 2006;64:129135.CrossRefGoogle ScholarPubMed
Kolmos, HJ, Lerche, A, Kristoffersen, K, Rosdahl, VT. Pseudo-outbreak of Pseudomonas aeruginosa in HIV-infected patients undergoing fiberoptic bronchoscopy. Scand J Infect Dis 1994;26:653657.10.3109/00365549409008632CrossRefGoogle ScholarPubMed
Weinstein, HJ, Bone, RC, Ruth, WE. Contamination of a fiberoptic bronchoscope with Proteus species. Am Rev Respir Dis 1977;116:541543.10.1164/arrd.1977.116.3.541CrossRefGoogle ScholarPubMed
Silva, C V, Magalhães, VD, Pereira, CR, Kawagoe, JY, Ikura, C, Ganc, AJ. Pseudo-outbreak of Pseudomonas aeruginosa and Serratia marcescens related to bronchoscopes. Infect Control Hosp Epidemiol 2003;24:195197.CrossRefGoogle ScholarPubMed
Vandenbroucke-Grauls, CM, Baars, AC, Visser, MR, Hulstaert, PF, Verhoef, J. An outbreak of Serratia marcescens traced to a contaminated bronchoscope. J Hosp Infect 1993;23:263270.CrossRefGoogle ScholarPubMed
Larson, JL, Lambert, L, Stricof, RL, Driscoll, J, McGarry, MA, Ridzon, R. Potential nosocomial exposure to Mycobacterium tuberculosis from a bronchoscope. Infect Control Hosp Epidemiol 2003;24:825830.CrossRefGoogle ScholarPubMed
Kolmos, HJ, Lerche, A, Kristoffersen, K, Rosdahl, VT. Pseudo-outbreak of pseudomonas aeruginosa in HIV-infected patients undergoing fiberoptic bronchoscopy. Scand J Infect Dis 1994;26:653657.CrossRefGoogle ScholarPubMed
Kressel, AB, Kidd, F. Pseudo-outbreak of Mycobacterium chelonae and Methylobacterium mesophilicum caused by contamination of an automated endoscopy washer. Infect Control Hosp Epidemiol 2001;22:414418.CrossRefGoogle ScholarPubMed
Steere, AC, Corrales, J, Von Graevenitz, A. A cluster of Mycobacterium gordonae isolates from bronchoscopy specimens. Am Rev Respir Dis 1979;120:214216.Google ScholarPubMed
Schleupner, CJ, Hamilton, JR. A pseudoepidemic of pulmonary fungal infections related to fiberoptic bronchoscopy. Infect Control 1980;1:3842.CrossRefGoogle ScholarPubMed
Cox, R, deBorja, K, Bach, MC. A pseudo-outbreak of Mycobacterium chelonae infections related to bronchoscopy. Infect Control Hosp Epidemiol 1997;18:136137.CrossRefGoogle ScholarPubMed
Southwick, KL, Hoffmann, K, Ferree, K, Matthews, J, Salfinger, M. Cluster of tuberculosis cases in North Carolina: possible association with atomizer reuse. Am J Infect Control 2001;29:16.CrossRefGoogle ScholarPubMed
Wang, HC, Liaw, YS, Yang, PC, Kuo, SH, Luh, KT. A pseudoepidemic of Mycobacterium chelonae infection caused by contamination of a fibreoptic bronchoscope suction channel. Eur Respir J 1995;8:12591262.CrossRefGoogle ScholarPubMed
Agerton, T, Valway, S, Gore, B, et al. Transmission of a highly drug-resistant strain (strain W1) of Mycobacterium tuberculosis. Community outbreak and nosocomial transmission via a contaminated bronchoscope. JAMA 1997;278:10731077.CrossRefGoogle Scholar
Nelson, KE, Larson, PA, Schraufnagel, DE, Jackson, J. Transmission of tuberculosis by flexible fiberbronchoscopes. Am Rev Respir Dis 1983;127:97100.10.1164/arrd.1983.127.1.97CrossRefGoogle ScholarPubMed
Alipour, N, Karagoz, A, Taner, A, et al. Outbreak of hospital infection from biofilm-embedded pan drug-resistant Pseudomonas aeroginosa, due to a contaminated bronchoscope. J Prev Med 2017;2:1.CrossRefGoogle ScholarPubMed
Kirschke, DL, Jones, TF, Craig, AS, et al. Pseudomonas aeruginosa and Serratia marcescens contamination associated with a manufacturing defect in bronchoscopes. N Engl J Med 2003;348:214220.CrossRefGoogle ScholarPubMed
Sorin, M, Segal-Maurer, S, Mariano, N, Urban, C, Combest, A, Rahal, JJ. Nosocomial transmission of imipenem-resistant Pseudomonas aeruginosa following bronchoscopy associated with improper connection to the Steris System 1 processor. Infect Control Hosp Epidemiol 2001;22:409413.CrossRefGoogle Scholar
Vandenbroucke-Grauls, CMJE, Baars, ACM, Visser, MR, Hulstaert, PF, Verhoef, J. An outbreak of Serratia marcescens traced to a contaminated bronchoscope. J Hosp Infect 1993;23:263270.CrossRefGoogle ScholarPubMed
Whitlock, WL, Dietrich, RA, Steimke, EH, Tenholder, MF. Rhodotorula rubra contamination in fiberoptic bronchoscopy. Chest 1992;102:15161519.CrossRefGoogle ScholarPubMed
Wilson, SJ, Everts, RJ, Kirkland, KB, Sexton, DJ. A pseudo-outbreak of Aureobasidium species lower respiratory tract infections caused by reuse of single-use stopcocks during bronchoscopy. Infect Control Hosp Epidemiol 2000;21:470472.CrossRefGoogle ScholarPubMed
Srinivasan, A, Wolfenden, LL, Song, X, et al. An outbreak of Pseudomonas aeruginosa infections associated with flexible bronchoscopes. N Engl J Med 2003;348:221227.CrossRefGoogle ScholarPubMed
Agerton, T, Valway, S, Gore, B, et al. Transmission of a highly drug-resistant strain (strain W1) of Mycobacterium tuberculosis: community outbreak and nosocomial transmission via a contaminated bronchoscope. JAMA 1997;278:10731077.CrossRefGoogle Scholar
Dennison, EM, Compston, JE, Flahive, J, et al. Effect of comorbidities on fracture risk: findings from the Global Longitudinal Study of Osteoporosis in Women (GLOW). Bone 2012;50:12881293.CrossRefGoogle ScholarPubMed
Peaper, DR, Havill, NL, Aniskiewicz, M, et al. Pseudo-outbreak of Actinomyces graevenitzii associated with bronchoscopy. J Clin Microbiol 2015;53:113117.CrossRefGoogle ScholarPubMed
Llor, C, Bjerrum, L. Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf 2014;5:229.CrossRefGoogle ScholarPubMed
A rational approach to disinfection and sterilization: guideline for disinfection and sterilization in healthcare facilities. Centers for Disease Control and Prevention website. https://www.cdc.gov/infectioncontrol/guidelines/disinfection/rational-approach.html. Published 2016. Accessed February 22, 2023.Google Scholar
Mehta, AC, Minai, OA. Infection control in the bronchoscopy suite. a review. Clin Chest Med 1999;20:1932.CrossRefGoogle ScholarPubMed
Culver, DA, Gordon, SM, Mehta, AC. Infection control in the bronchoscopy suite: a review of outbreaks and guidelines for prevention. Am J Respir Crit Care Med 2003;167:10501056.10.1164/rccm.200208-797CCCrossRefGoogle ScholarPubMed
Weber, DJ, Rutala, WA. Lessons from outbreaks associated with bronchoscopy. Infect Control Hosp Epidemiol 2001;22:403408.CrossRefGoogle ScholarPubMed
Ardoino, I, Zangirolami, F, Iemmi, D, et al. Risk factors and epidemiology of Acinetobacter baumannii infections in a university hospital in northern Italy: a case–control study. Am J Infect Control 2016;44:16001605.CrossRefGoogle Scholar
Supplementary material: File

Kakoullis et al. supplementary material

Kakoullis et al. supplementary material 1

Download Kakoullis et al. supplementary material(File)
File 15.2 KB
Supplementary material: File

Kakoullis et al. supplementary material

Kakoullis et al. supplementary material 2

Download Kakoullis et al. supplementary material(File)
File 26.3 KB