Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-07T23:28:58.861Z Has data issue: false hasContentIssue false

Predictive Ability of the MEWS, REMS, and RAPS in Geriatric Patients With SARS-CoV-2 Infection in the Emergency Department

Published online by Cambridge University Press:  02 May 2022

Serdar Özdemir*
Affiliation:
Department of Emergency Medicine, University of Health Sciences Ümraniye Training and Research Hospital, Istanbul, Turkey
Abdullah Algın
Affiliation:
Department of Emergency Medicine, University of Health Sciences Ümraniye Training and Research Hospital, Istanbul, Turkey
Hatice Şeyma Akça
Affiliation:
Department of Emergency Medicine, Karamanoğlu Mehmet Bey University, Istanbul, Turkey
İbrahim Altunok
Affiliation:
Department of Emergency Medicine, University of Health Sciences Ümraniye Training and Research Hospital, Istanbul, Turkey
Kâmil Kokulu
Affiliation:
Department of Emergency Medicine, Aksaray University, Istanbul, Turkey
Serkan Emre Eroğlu
Affiliation:
Department of Emergency Medicine, University of Health Sciences Ümraniye Training and Research Hospital, Istanbul, Turkey
Gökhan Aksel
Affiliation:
Department of Emergency Medicine, University of Health Sciences Ümraniye Training and Research Hospital, Istanbul, Turkey
*
Corresponding author: Serdar Özdemir, Email: dr.serdar55@hotmail.com.

Abstract

Background:

The aim of this study was to compare the ability of the Modified Early Warning Score (MEWS), Rapid Emergency Medicine Score (REMS), and Rapid Acute Physiology Score (RAPS) to predict 30-d mortality in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection aged 65 y and over.

Methods:

This prospective, single-center, observational study was carried out with 122 volunteers aged 65 y and over with patients confirmed to have SARS-CoV-2 infection according to the reverse transcriptase-polymerase chain reaction (RT-PCR) test, who presented to the emergency department between March 1, 2020, and May 1, 2020. Demographic data, comorbidities, vital parameters, hematological parameters, and MEWS, REMS, and RAPS values of the patients were recorded prospectively.

Results:

Among the 122 patients included in the study, the median age was 71 (25th-75th quartile: 67-79) y. The rate of 30-d mortality was 10.7% for the study cohort. The area under the receiver operating characteristic curve values for MEWS, RAPS, and REMS were 0.512 (95% confidence interval [CI]: 0.420-0.604; P = 0.910), 0.500 (95% CI: 0.408-0.592; P = 0.996), and 0.675 (95% CI: 0.585-0.757; P = 0.014), respectively. The odds ratios of MEWS (≥2), RAPS (>2), and REMS (>5) for 30-d mortality were 0.374 (95% CI: 0.089-1.568; P = 0.179), 1.696 (95% CI: 0.090-31.815; P = 0.724), and 1.008 (95% CI: 0.257-3.948; P = 0.991), respectively.

Conclusions:

REMS, RAPS, and MEWS do not seem to be useful in predicting 30-d mortality in geriatric patients with SARS-CoV-2 infection presenting to the emergency department.

Type
Brief Report
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Society for Disaster Medicine and Public Health, Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Watkins, J, Maruthappu, M. Public health and economic responses to COVID-19: finding the tipping point. Public Health. 2021;191:21-22. doi: 10.1016/j.puhe.2020.05.025 CrossRefGoogle ScholarPubMed
Aksel, G, İslam, MM, Algın, A, et al. Early predictors of mortality for moderate to severely ill patients with SARS-CoV-2 infection [published online ahead of print, 2020 Aug 28]. Am J Emerg Med. 2020;S0735-6757(20)30770-1. doi:10.1016/j.ajem.2020.08.076CrossRefGoogle Scholar
Özdemir, S, Akça, , Algın, A, et al. Effectiveness of the rapid emergency medicine score and the rapid acute physiology score in prognosticating mortality in patients presenting to the emergency department with COVID-19 symptoms. Am J Emerg Med. 2021;49:259-264. doi: 10.1016/j.ajem.2021.06.020 CrossRefGoogle Scholar
Hu, H, Yao, N, Qiu, Y. Predictive value of 5 early warning scores for critical COVID-19 Patients. Disaster Med Public Health Prep. 2020:1-8. doi:10.1017/dmp.2020.324CrossRefGoogle Scholar
Hu, H, Kong, W, Yao, N, et al. Prognostic value of three rapid scoring scales and combined predictors for the assessment of patients with coronavirus disease 2019. Nurs Open. 2022:9(3):1865-1872. doi: 10.1002/nop2.934 CrossRefGoogle ScholarPubMed
Hanley, JA, McNeil, BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29-36. doi: 10.1148/radiology.143.1.7063747 CrossRefGoogle Scholar
Fischer, JE, Bachmann, LM, Jaeschke, R. A readers’ guide to the interpretation of diagnostic test properties: clinical example of sepsis. Intensive Care Med. 2003;29(7):1043-1051. doi: 10.1007/s00134-003-1761-8 CrossRefGoogle Scholar
Hu, H, Yao, N, Qiu, Y. Comparing rapid scoring systems in mortality prediction of critically ill patients with novel coronavirus disease. Acad Emerg Med. 2020;27(6):461-468. doi: 10.1111/acem.13992 CrossRefGoogle ScholarPubMed
Martín-Rodríguez, F, Martín-Conty, JL, Sanz-García, A, et al. Early warning scores in patients with suspected COVID-19 infection in emergency departments. J Pers Med. 2021;11(3):170. doi: 10.3390/jpm1103017 CrossRefGoogle ScholarPubMed
Covino, M, Sandroni, C, Santoro, M, et al. Predicting intensive care unit admission and death for COVID-19 patients in the emergency department using early warning scores. Resuscitation. 2020;156:84-91. doi: 10.1016/j.resuscitation.2020.08.124 CrossRefGoogle ScholarPubMed